NGN: от концепции к проектам (PCWeek). Структура современной сети NGN Описание уровня услуг и управления услугами

Сеть будущего поколения (NGN) – это сеть с пакетной коммутацией, способная обеспечить пользователей услугами, включая услуги телефонной связи, и способная использовать коллективную широкополосную сеть, технологии транспортировки, основаясь на QoS, в которых функции, связанные с услугами, не зависят от базовых технологий транспортировки. Она дает пользователям неограниченный доступ к различным услугам провайдеров. Она поддерживает обобщенную мобильность, которая позволит постоянно и повсеместно обеспеченить услугами пользователей.

NGN (Сеть будущего поколения) характеризуется следующими фундаментальными аспектами:

Технология с пакетной коммутацией;

Разделением контрольных функций, вызов/сеанс и приложение/услуга;

Разделение на виртуальные сети и обеспечение открытыми интерфейсами;

Поддержкой широкого ряда услуг, приложений и механизмов, основанных на стандартных (унифицированных) сервисно-конструируемых блоках (включая услуги реального времени, поточные, не реального времени и мультимедийные услуги);

Возможностью широкополосного доступа со сквозной передачей с заданным качеством QoS предоставляемых услуг и инвариантностью по отношению к различным схемам кодирования;

Обеспечением межсетевого обмена и взаимодействие с действующими сетями посредством открытых интерфейсов;

Поддержкой мобильной связи;

Предоставлением пользователям неограниченного доступа к различным провайдерам услуг;

Разнообразием схем идентификации в IP сетях;

Унифицированными характеристиками сервисных услуг для корректного использования ее конечным пользователем

Объединенными услугами между статическими и подвижными сетями;

Независимостью сервисных функций от базовых технологий транспортировки;

Отвечает всем действующим требованиям, касающихся аварийной связи, безопасности, приватности и т.д

44. Телекоммуникации в мировой экономике

Увеличение значения телекоммуникаций в мировой экономике за последние годы хорошо прослеживается при анализе динамики доли телекоммуникационных услуг в ВВП: за период 1990-2007 гг. доля телекоммуникаций в ВВП увеличилась с 1,7% до 3,2%, а доля телекоммуникаций в общей величине услуг – с 2,8% до 4,7%. Таким образом, динамика развития телекоммуникаций опережает как экономику в целом, так и сферу услуг.

По оценкам Международного союза электросвязи, объем мирового рынка телекоммуникационных услуг в 2007 году составил более 1 700 млрд. долл. США (прирост к 2006 году более 12%). Причем, за последние 15 лет телекоммуникационный рынок увеличился более чем в 3 раза, а среднегодовые темпы прироста в сложных процентах превысили 9%. Инвестиции в развитие телекоммуникационных услуг в 2007 году в мире составили более 200 млрд. долл. США.



На конец 2007 года в мире насчитывалось около 3,2 млрд. абонентов сотовых сетей, около 1,3 млрд. абонентов фиксированных сетей и более 1,3 млрд. пользователей сети Интернет. Таким образом, сегодня условно каждый второй человек в мире имеет сотовый телефон, а каждый пятый – пользуется Интернетом и/или имеет у себя дома стационарный (фиксированный) телефонный аппарат.

Основная тенденция последних 15 лет – бурное развитие мобильной связи и Интернета – практически весь прирост пользователей телекоммуникационных сетей приходился именно на них. Доходы от предоставления услуг мобильной связи в 2007 году составили более 800 млрд. долл. США, для сравнения в 1991 году данный показатель составлял лишь 19 млрд. долл. США. Соответственно, изменилась и структура доходов отрасли – доля доходов от мобильной связи возросла с 5% до 50%, доля доходов от фиксированной связи уменьшилась с 82% до 34%. За последние 15 лет именно мобильная связь была главным фактором роста доходов отрасли, обеспечивая большую часть прироста доходов отрасли, доходы от фиксированной связи в это же время стагнировали (ежегодный средний прирост около 3%) относительно мобильной связи (ежегодный средний прирост более 27%). Таким образом, анализ динамики структуры доходов от оказания телекоммуникационных услуг позволяет сформулировать следующий тезис – уменьшение значения фиксированной связи при увеличении значения мобильной на телекоммуникационном рынке являлось определяющим фактором развития отрасли на протяжении 1990-х гг. и в начале ХХI века.

Еще одним важным фактором роста телекоммуникаций стала либерализация рынков, которая позволила свободно перемещать новые технологии и разработки с развитых рынков на менее развитые. Снятие барьеров для иностранных компаний позволило построить современные телекоммуникационные сети на развивающихся рынках. Анализ развития крупных телекоммуникационных операторов в 1990-2000-е гг. свидетельствует о том, что экспансия на зарубежные рынки и развитие новых технологий, в первую очередь, беспроводной связи стали основными «драйверами» роста. В результате, сегодня большинство крупных телекоммуникационных компаний являются транснациональными. Интернализация операторов усиливается с каждым годом, а услуги беспроводной связи – одним из основных направлений бизнеса, причем доля мобильных услуг в выручке увеличивается с каждым годом. Самым ярким примером интернализации телекоммуникационных компаний является крупнейший в мире по доходам британский оператор мобильной связи Vodafone, который в 2007 году почти 90% доходов получил за рубежом.

Важной проблемой развития телекоммуникаций сегодня является неравномерность развития телекоммуникаций, для обозначения данной проблемы был даже введен специальный термин «digital divide» (игра слов – разрыв на порядок и раздел по использованию цифровых технологий). Данная проблема актуальна как на национальном уровне (неразвитость телекоммуникаций в сельской и малонаселенной местности в силу нерентабельности оказания телекоммуникационных услуг там из-за низкой плотности населения), так и в глобальном масштабе.

«Digital divide» является одной из самых важных проблем современной экономики. К сожалению, ее нельзя разрешить, просто построив телекоммуникационные сети в развивающихся странах, корни проблемы уходят в экономические, социокультурные и политические факторы. Среди данных факторов можно упомянуть уровень доходов населения, уровень грамотности, языковые проблемы, наличие физической инфраструктуры, уровень инвестиций в телекоммуникации, политическая стабильность, четкость и определенность регулирования в отрасли, размещение и плотность населения в стране. Данная проблема приковывает внимание большинства международных специализированных институтов. Сегодня важно создать и способствовать распространению такой регуляторной среды, которая бы способствовала привлечению инвестиций и развитию телекоммуникаций развивающихся стран, что, в свою очередь, будет способствовать сокращению масштаба «digital divide» и увеличению доступности информационных технологий для большей части населения Земли.

Развитие телекоммуникаций тесно связано с развитием экономики – чем выше уровень развития экономики, тем выше уровень развития телекоммуникаций. При этом существует и связь в обратном направлении, рост телекоммуникационной отрасли помимо увеличения числа рабочих мест увеличивает эффективность других отраслей экономики. Интересна зависимость относительной величины развития телекоммуникаций и экономики на разных этапах развития экономики. До определенного уровня ВВП на душу населения зависимость прямая – чем выше уровень ВВП на душу населения, тем выше доля телекоммуникаций в ВВП. Затем зависимость становится обратной – при достижении определенного уровня развития доля телекоммуникаций в ВВП начинает снижаться, что свидетельствует о существовании предельного набора телекоммуникационных услуг, необходимого потребителю, стоимость которого не превышает определенной величины.

Конец ХХ века стал временем стремительных технологических изменений в телекоммуникационной отрасли. Причем большинство технологических инноваций, предлагаемых поставщиками услуг, оказались востребованными потребителями, таким образом, спрос на услуги соответствовал предложению. Сегодня в значительной степени сам рынок (спрос) провоцирует различные технологические новинки и изменения, которые являются необходимым ответом на рост объемов и характера трафика, а также различным требованиям потребителей к качественным характеристикам передачи трафика (в том числе требования мобильности). При этом сегодня сама телекоммуникационная инфраструктура отходит на второй план, уступая доминирующую роль различным сервисам, реализуемым на базе данной инфраструктуры.

В настоящее время среди глобальных тенденций на телекоммуникационном рынке, направление и силу которых определяют технологические факторы, можно выделить следующие:

¾ дальнейшее развитие беспроводных сетей,

¾ развитие широкополосного доступа в Интернет,

¾ развитие IP приложений,

¾ конвергенция сетей и услуг.

В работе описаны и проанализированы данные тенденции и их влияние на развитие ИКТ отрасли.

Телекоммуникационная отрасль в РК динамично развивается на протяжении последних лет. В РК практически решена проблема обеспечения базовыми телекоммуникационными услугами. Сегодня все чаще поднимается вопрос о дальнейшем пути развития отрасли. При этом высокий уровень образованности населения позволяет искать источники роста не только непосредственно в отрасли телекоммуникаций, но и на стыке с отраслью информационных технологий. Ведь телекоммуникации являются инфраструктурной отраслью для ИКТ и в условиях бурного развития телекоммуникаций очевиден вопрос интенсификации использования ИКТ.

Основным макроэкономическим фактором, обусловливающим развитие телекоммуникаций в РК сегодня и в ближайшие годы, является увеличение ВВП и, как следствие, ВВП на душу населения и средних доходов населения. Высокий уровень образованности населения стимулирует рост спроса на услуги связи (расходов на телекоммуникационные услуги).

Сопоставление РК с другими странами по уровню проникновения основных телекоммуникационных услуг, позволяет сравнить степень их распространения в РК и в мире. Уровень распространения мобильной связи в РК сегодня соответствует наиболее развитым странам, более того рынок достиг насыщения. Сегодня в РК мобильная связь доступна практически на всей территории, где проживают люди. При этом бурное развитие мобильной связи превзошло ожидания большинства аналитиков. Уровень проникновения услуг фиксированной связи в РК сегодня ниже, чем в большинстве развитых стран и, видимо, останется на том же уровне в обозримом будущем.

Сопоставление уровня развития Интернет в РК и в мире (более низкое проникновение по сравнению с развитыми странами), а также благоприятная макроэкономическая ситуация в РК, свидетельствуют о значительном потенциале роста Интернет в ближайшие годы. Структура доходов от телекоммуникационных услуг в РК претерпела значительные изменения, в целом соответсвующих мировым тенденциям – рост доходов, главным образом, обеспечивается «новыми» услугами, мобильной связью и Интернет.

Динамика темпов роста основных сегментов телекоммуникационного рынка в 2006 и 2007 гг. продемонстрировала дальнейшее движение отечественного рынка в сторону развитых рынков. Основной прирост доходов обеспечили услуги Интернет (в том числе и передачи данных) и мобильной связи. Рост рынка местной связи был в основном связан с увеличением регулируемых тарифов. Доля дальней связи продолжает падать из-за снижения цен и замещения со стороны мобильной связи.

Дальнейшее развитие телекоммуникационной отрасли в РК будет связано, прежде всего, с интенсификацией использования существующей инфраструктуры, что в первую очередь, зависит от развития смежной отрасли информационных технологий. Недаром, в последние годы все чаще и чаще телекоммуникации и информационные технологии объединяют в один сектор ИКТ, а конвергенция сетей, услуг и технологий является одной из основных тенденций отрасли ИКТ. Важно отметить, что более высокие перспективы роста ИТ компаний по сравнению с телекоммуникационными можно проследить и при анализе стоимости публичных ИКТ компаний. Так типичным отношением рыночной капитализации к выручке для телекоммуникационных компаний является значение от 1 до 3. Для ИТ же компаний сегодня это значение превышает 10.

Причем такая оценка дается рынком, пережившим пузырь dot.com, аналитики на котором куда более взвешенно подходят к оценке перспектив компаний, чем 8-10 лет назад. Сегодня необходимо обеспечить интенсификацию использования ИТ наряду с увеличением производства различных ИТ-продуктов внутри страны, что важно для решения проблемы зависимости страны от сырьевых ресурсов. Задача регулирующих органов – создать необходимые предпосылки как для развития новых телекоммуникационных услуг, так и благоприятные условия для развития отрасли ИТ в среднесрочной и долгосрочной перспективе.

Важнейшим фактором развития телекоммуникационной отрасли наряду с технологическими изменениями является реформирование регулятивной среды. Анализ мирового опыта преобразования телекоммуникационной отрасли в целях повышения эффективности и развития конкуренции, а также основных современных тенденций, позволяет выявить основные направления реформирования отрасли:

¾ изменение структуры отрасли;

¾ регулирование присоединения сетей операторов, в том числе межоператорских тарифов;

¾ регулирование тарифов для конечных пользователей;

¾ оказание социально-значимых нерентабельных услуг связи;

¾ снятие ограничений на иностранные инвестиции;

¾ распределение ограниченных ресурсов (прежде всего частотного спектра);

¾ постоянное отслеживание новых услуг и создание наиболее благоприятных условий для них – соответствие регулятивной среды современным тенденциям развития телекоммуникаций.

В условиях коренного изменения структуры отрасли и постоянных технологических изменений именно реформа регулирования отрасли, адекватная всем возникающим вызовам, способна обеспечить усиление конкуренции в отрасли и предоставление современных телекоммуникационных услуг большей части населения.

Практически ежегодные технологические инновации в области телекоммуникаций также требуют особого подхода, зачастую определенных преференций в течение внедряемого периода, для обеспечения их повсеместного использования и дальнейшего усиления конкуренции. В то же время, регулирование отрасли должно отражать интересы всех жителей стран без исключения и обеспечивать минимальный набор современных телекоммуникационных услуг всем желающим по доступным регулируемым ценам в целях сокращения масштабов digital divide.

Либерализация национальных телекоммуникационных рынков в развитых странах в 1990-е гг. усилила внутристрановую конкуренцию. Усиление конкуренции наряду с активным развитием новых технологий, снижавшим капиталовложения в строительство новых сетей, стало причиной поиска телекоммуникационными операторами новых возможностей для расширения бизнеса на зарубежных рынках, где существовал неудовлетворенный спрос на услуги связи. В это время большинство развивающихся стран характеризовалось невысоким уровнем развития телекоммуникаций, поэтому именно эти страны в первую очередь становились объектом экспансии операторов из развитых стран. Нередко операторы на новых рынках сталкивались с ограничениями на участие иностранного капитала в операторах связи, а также с устаревшим законодательством в области связи, не отвечавшим современным реалиям, что зачастую, несмотря на привлекательность фундаментальных характеристик рынка, приводило к отказу операторов от инвестирования. Соглашения в рамках международных организаций были призваны снять подобные ограничения и гармонизировать регулирование телекоммуникаций. Наиболее распространенными на сегодняшний день международными соглашениями в области телекоммуникаций являются Соглашения ВТО. Еще одним международным соглашением в области телекоммуникаций являются Директивы Европейского Союза. Концептуальные положения Директив ЕС соответствуют Соглашениям ВТО. Существенным отличием Директив ЕС от соглашений в рамках ВТО является их большая детализация и регулярное обновление.

45. Современное регулирование телекоммуникаций

Современное регулирование телекоммуникаций можно рассматривать как одну из форм экономической политики, направленную на устранение изъянов рынка и создание благоприятных условий для его функционирования.

История регулирования телекоммуникаций полна увлекательных событий, конфликтов и войн, компромиссов и договоренностей, судебных разбирательств и вердиктов правительств.

Создание первых мировых телекоммуникационных сетей в конце XIX века осуществлялось частными компаниями. Однако их деятельность с самого начала регламентировалась в той или иной форме.

В регулировании телекоммуникаций можно выделить несколько важных составляющих: техническое регулирование, экономическое регулирование, административное регулирование.

Назовем ряд основных общих принципов регулирования телекоммуникаций:

· развитие конкурентной среды рынка телекоммуникаций на основе контроля за концентрацией собственности, слиянием компаний и деятельностью монополий;

· обеспечение недискриминационного доступа на телекоммуникационный рынок и равной доступности к его ресурсам всех субъектов рынка;

· справедливое и прозрачное распределение ограниченных ресурсов телекоммуникаций;

· создание устойчивых механизмов устранения потенциальных конфликтов между участниками телекоммуникационного рынка;

· обеспечение права граждан на доступ к телекоммуникационным и информационным ресурсам с определенным уровнем качества и по приемлемым ценам;

· защита прав пользователей;

· обеспечение информационной безопасности;

· охрана интеллектуальной собственности, включая борьбу с пиратством и преступлениями в сфере высоких технологий;

· обеспечение национальных интересов, устанавливаемых законодательствами той и ли иной страны (например, обеспечение интересов национальных производителей оборудования).

Несмотря на наличие общих принципов, существуют большие различия в методах регулирования, используемых как на международном, так и национальном уровне.

Назовем некоторые международные организации, участвующие в той или иной форме в регулировании телекоммуникаций.

46.Органы регулирования телекоммуникаций на национальном и международном уровнях?

Государственные органы прямо и косвенно управляющие и регулирующие отрасль связи

В Казахстане существует система специализированных институтов по поддержке МСП, ориентированных на ИКТ, которые делятся на государственные и негосударственные институты. К государственным институтам относятся: Агентство РК по информатизации и связи, Министерство индустрии и торговли РК, Министерство транспорта и коммуникации РК и АО «ФНБ «Самрук-Казына».

Координация инновационной деятельности субъектов малого и среднего бизнеса производится Министерством индустрии и торговли Республики Казахстан и «Фондом национального благосостояния «Самрук-Казына». Институты развития представлены следующим образом

В Казахстане созданы Институты развития, деятельность которых направлена на развитие инноваций, предпринимательства, венчурных фондов, в общем, на реализацию индустриально-инновационной стратегии государства. Все Институты развития объединены в Фонд национального благосостояния «Самрук-Казына».

Национальный инновационный фонд включает Бизнес-инкубаторы и Венчурные фонды, а Центр инжиниринга и трансферта технологий относятся: технологические парки и специальная экономическая зона «Парк информационных технологий Алатау».

К негосударственным институтам относятся: ассоциации предпринимателей и Ассоциация IT- компаний.

В ближайшие годы, регулирующие органы по всему миру будут продолжать играть важную роль в мире телекоммуникаций. Там, где имеет место распределение невозобновляемых ресурсов, существуют внешние влияния или естественные монополии или олигополии, конкуренция не может развиваться свободно, и в таких обстоятельствах в процесс должны вмешиваться регулирующие методы. В дополнение к этому, регуляторы во многих странах активно поддерживают трансформацию в информационное общество. Можно предположить, что международные организации, такие как Европейский союз, ВТО и Мировой банк будут оказывать большую поддержку развитию процесса в этом направлении для того чтобы в отношении вопросов регулирования мог быть как можно быстрее реализован «наилучший опыт».

Detecon проводит консультации регулирующих органов по реализации регулирующих процедур в соответствии с международными стандартами, например, ВТО, Международного союза электросвязи или Европейского союза. Наши эксперты проводят реформы в отрасли, осуществляют приватизационные проекты, и помогают оформлять юридические схемы для оказания помощи в организации работы регулирующих органов, а также разрабатывают регулирующие инструменты, такие как процедуры получения лицензий, регулирование цен, межсетевое взаимодействие, фонды универсальных услуг, защита данных, множественный сетевой доступ и прочее.

47 Роль МСЭ в развитии телекоммуникаций?

Международный союз электросвязи (МСЭ) - международная организация, в рамках которой правительствами и частным сектором координируются глобальные сети и услуги электросвязи. Основанный в Париже в 1865 г. как Международный телеграфный союз, МСЭ получил свое нынешнее название в 1934 г., а в 1947 г. стал специализированным учреждением Организации Объединенных Наций.

В МСЭ входит 193 страны и более 700 членов по секторам и ассоциациям (научно-промышленных предприятий, государственных и частных операторов связи, радиовещательных компаний, региональных и международных организаций). Его руководящий орган -- Полномочная конференция -- созывается раз в четыре года и избирает Совет МСЭ в составе 46 членов, который проводит свои заседания ежегодно.

Являясь специализированным учреждением ООН в области ИКТ, МСЭ также играл ведущую роль в проведении Всемирного саммита по информационному обществу, который проходил в Женеве 10–12 декабря 2003 года и в Тунисе 16–18 ноября 2005 года. Участники Саммита приняли декларацию принципов и план действий, направленные на строительство информационного общества, сконцентрированного на потребностях населения, всеохватывающего и ориентированного на развитие, в котором каждый может создавать, иметь доступ, пользоваться и обмениваться информацией и знаниями.

1) Разрабатывает стандарты, способствующие подключению национальных коммуникационных инфраструктур к глобальным сетям, что обеспечивает бесперебойный обмен информацией - будь то данные, факсы или телефонные звонки - по всему миру;

2) Работает над интегрированием новых технологий в глобальную телекоммуникационную сеть, позволяющих развивать новые направления, такие как Интернет, электронная почта, мультимедийные системы и электронная торговля;

3) Принимает международные положения и договоры, регулирующие распределение диапазона радиочастот и спутниковых орбитальных позиций - конечных природных ресурсов, используемых всевозможным оборудованием, включая телевизионное и радиовещание, мобильные телефоны, спутниковые коммуникационные системы, авиационные и морские навигационные системы и системы безопасности, беспроводные компьютерные системы;

4) Стремится к расширению и совершенствованию телекоммуникаций в развивающихся странах, предоставляя консультации в определении политики, техническую помощь, руководство проектами и обучение, а также способствуя налаживанию партнерских отношений между телекоммуникационными администрациями, финансирующими учреждениями и частными организациями.

В современной стремительно развивающейся ситуации в области телекоммуникаций членство в МСЭ дает правительствам и частным организациям уникальную возможность внести свой существенный и ценный вклад в события, быстро изменяющие мир. Состав членов МСЭ представляет срез индустрии информационных и телекоммуникационных технологий - от крупнейших мировых производителей и операторов связи до новых мелких инновационных «игроков», действующих в таких областях, как IP–протокол

48 Цели и структура МСЭ?

усилия МСЭ сосредоточены на укреплении связи в чрезвычайных ситуациях с целью предотвращения бедствий и смягчения их последствий. И развитые, и развивающиеся страны в равной степени подвержены стихийным бедствиям, однако более бедные страны находятся в самом трудном положении, поскольку их экономика и без того является слабой, а необходимые ресурсы отсутствуют.

Все аспекты работы МСЭ имеют своей основной целью обеспечить для каждого человека легкий и доступный в ценовом отношении доступ к информации и связи, и направлены на оказание ощутимого содействия в социально-экономическом развитии в интересах всех людей. Это достигается либо путем разработки стандартов, используемых для создания инфраструктуры предоставления услуг электросвязи во всем мире, путем справедливого управления использованием радиочастотного спектра и спутниковых орбит, помогающих донести беспроводные услуги до каждого уголка мира, либо посредством предоставления поддержки странам в осуществлении их стратегий развития электросвязи.

МСЭ остается приверженным цели помогать миру общаться.

Цель. МСЭ в основном занимается распределением радиочастот, организацией международной телефонной и радиосвязи, стандартизацией телекоммуникационного оборудования. Целью Союза является обеспечение и расширение международного сотрудничества в региональном использовании всех видов связи, совершенствование технических средств, их эффективная эксплуатация.

структура МСЭ. Штаб-квартира МСЭ находится в Женеве (Швейцария) рядом со зданием ООН. Руководящий орган - Полномочная конференция, которая созывается раз в четыре года и избирает Совет МСЭ в составе 46 членов, который проводит свои заседания ежегодно. Представители всех стран-членов МСЭ на конференции по стандартизации в области телекоммуникаций (англ. World Telecommunication Standardization Conference, WTSC) определяют основные направления деятельности каждого сектора и формируют новые рабочие группы и утверждают план работ на следующие четыре года. Текущая структура МСЭ была определена в декабре 1992 г. и включает следующие подразделения:

Сектор радиосвязи МСЭ-R

В основе работы Сектора радиосвязи МСЭ (МСЭ-R) лежит управление использованием ресурсов международного радиочастотного спектра и спутниковых орбит.

Сектор стандартизации электросвязи МСЭ-T

Деятельность МСЭ по разработке стандартов является самым известным и самым давним видом его деятельности.

Сектор развития электросвязи МСЭ-D

Сектор развития электросвязи МСЭ (МСЭ-D) был создан для того, чтобы содействовать распространению справедливого, устойчивого и приемлемого в ценовом отношении доступа к информационно-коммуникационным технологиям (ИКТ)

ITU TELECOM

На ITU TELECOM собираются самые влиятельные личности отрасли ИКТ, а также министры, представители регуляторных органов и еще многие другие известные деятели для проведения крупных выставок, форумов высокого уровня и многих других мероприятий

Все секторы имеют исследовательские комиссии. Сектор стандартизации электросвязи (МСЭ-Т) в наибольшей степени связан (на данный момент) с волоконно-оптическими сетями. Сектор образован организациями пяти классов:

· класс A : национальные министерства и ведомства связи;

· класс B : крупные частные корпорации, занимающиеся связью;

· класс C : научные организации и предприятия, производящие оборудование связи;

· класс D : международные организации, в том числе международная организация по стандартизации (ISO);

· класс E : организации из других областей, но заинтересованные в деятельности сектора.

49. Цели и задачи радиоконтроля использования частотного спектра

Конкретными целями радиоконтроля являются :

A. Обеспечение администраций данными, необходимыми для процесса управления использованием РЧС, как-то:

информацией о степени занятости электромагнитными излучениями диапазонов и отдельных частот;

информацией о соответствии параметров передаваемых сигналов требованиям лицензий на передачу;

данными по ведению и проверке регистрации частот;

данными по обнаружению, опознаванию и определению местоположения источников несанкционированных радиоизлучений.

B. Содействие в решении проблем электромагнитной совместимости при вводе в эксплуатацию новых радиосистем, присвоении рабочих частот и составлении частотных планов посредством контроля границ зон обслуживания, параметров РЭС и выявления источников помех конкретным радиосистемам.

C. Содействие в обеспечении допустимого уровня помех при приеме населением звуковых и телевизионных вещательных программ.

Д. Обеспечение администраций информацией, связанной с решением конкретных задач по обращениям пользователей РЧС, а также для: программ международного радиомониторинга.

Цели определяют конкретные технические задачи радиоконтроля, которые подробно изложены в . К ним, в частности, относятся:

1.) Измерение параметров и характеристик сигналов и источников радиоизлучений. Измерения включают:

измерение частоты излучения и ее соответствия присвоенному номиналу;

измерение ширины полосы частот, занимаемой сигналом, и соответствия присвоенной полосе частот;

определение класса излучения для оценки его параметров модуляции;

измерение шумов окружения, обычно на долговременной основе, для решения некоторых вопросов по использованию спектра, таких как применение широкополосных сигналов;

измерение специальных характеристик сигналов для конкретного вида службы, например телевизионного вещания, широкополосных спутниковых передач и т.п.

2. ) Анализ радиоизлучений для:

идентификации источников недопустимых радиопомех;

проверки соответствия идентификационных сигналов (позывных) национальным и международным регламентам идентификации сигналов;

идентификации незарегистрированных передатчиков;

пеленгации или определения местоположения источника недопустимой помехи и радиопередатчика, работающего с нарушениями национальных и международных стандартов и регламента.

3 .)Участие в международном радиомониторинге для исключения помех между РЭС вообще и помех в полосах частот, отведенных для подачи сигналов бедствия и обеспечения безопасности движения, в частности, а также для предоставления информации для Конференций радиосвязи.

4. ) Предоставление отчетов по результатам радиоконтроля для решения вопросов, связанных с разработкой стандартов на параметры излучений.

5. )Проведение периодических инспекционных проверок радиооборудования для проверки его соответствия техническим, рабочим и регламентным условиям, установленным для управления использованием РЧС.

Приведенный перечень задач, решаемых службой радиоконтроля еще раз подтверждает, что без ее поддержки эффективная деятельность администраций по управлению использованием РЧС была бы практически невозможной.

Задачи РИ РЧС также подразделены на плановые, оперативные и внеплановые задачи. К плановым задачам относятся задачи, для которых необходимо регулярное получение данных радиоконтроля. Оперативные и внеплановые задачи являются вторичными задачами по отношению к основным плановым задачам, так как они могут возникать как результат решения плановых задач.

к задачам высшего уровня следует отнести такие задачи, как разработка предложений по использованию радиочастот радиоэлектронными средствами (РЭС) и ВЧ устройствами, разработка нормативно-технической документации, проведение мероприятий по международной координации частотных присвоений, разработка дополнительных мер по совершенствованию управления спектром, решение организационных вопросов и т.д. При решении этих задач в первую очередь необходимы данные, характеризующие состояние электромагнитной обстановки (ЭМО) по отдельным регионам и городам. К таким данным следует отнести:

список используемых радиослужб и типов РЭС, находящихся в эксплуатации, количество РЭС, находящихся под плановым радиоконтролем, и перечень контролируемых параметров;

перечень операторов связи и РЭС, у которых были зафиксированы нарушения в использовании РЧС, с указанием типа используемых радиопередатчиков (РПД), количества нарушений, причин и вида зафиксированных нарушений;

интегральные данные о загрузке выделенного частотного ресурса;

статистические данные о фоновых и сосредоточенных помехах, включая незаконно действующие передатчики (НДП), на выделенном частотном ресурсе;

данные о наличии и результатах контроля свободного и пригодного для использования частотно-территориального ресурса.

Задачи РИ РЧС нижнего уровня, как отмечено выше, решаются региональными управлениями. К этим задачам относятся:

назначение (присвоение) радиочастот;

контроль соблюдения правил использования частотных назначений;

контроль уровней помех действующим системам связи;

выявление источников помех и принятие мер по их устранению.

50. Роль радиоконтроля в управлении использованием РЧС

Радиоконтроль - контроль возможности получения информации противником с использованием радиопоиска, перехвата, анализа информации, передаваемой с помощью своих радиоэлектронных средств.

Радиоконтроль занимает существенную роль в технологическом цикле по управлению использованием радиочастотного спектра и должен содействовать решению задач, стоящих как перед радиочастотными органами (регулирующие задачи) на этапе присвоения частот и этапе эксплуатации РЭС, так и перед надзорными органами (надзорные функции) в предоставлении информации о нарушении порядка и правил использования радиочастот и соответствии параметров излучения РЭС требованиям нормативных документов

Термин «управление использованием радиочастотного спектра» используется для описания различных административных и технических процедур, которые должны гарантировать возможность такой работы радиостанций различных радио служб, при которой в любой момент времени они не создают помех работе других радиоэлектронных средств

(РЭС) и не испытывают помех со стороны других радиостанций. Управление использованием радиочастотного спектра (РЧС) выполняется на двух уровнях - международном и

национальном .

Управлять использованием спектра на международном уровне необходимо в связи с

тем, что РЧС - это ограниченный природный ресурс и его следует использовать рационально, эффективно и экономно так, чтобы страны и группы стран могли иметь равноправный доступ к нему. Радиоволны распространяются в пространстве, пересекая политические

границы без виз и разрешений.

Правительства стран, которые ратифицировали Устав и Конвенцию Международного

союза электросвязи (МСЭ), берут на себя обязательства:

– применять в своих странах положения Устава и Конвенции МСЭ;

– принять соответствующие национальные законодательные акты, в которые в обяза-

тельном порядке должны быть включены основные положения этих международных договоров.

Ответственность за выполнение этих обязательств берет на себя Администрация связи.

Согласно Уставу МСЭ Администрацией связи может выступать любое правительственное

учреждение или любая служба, ответственная за выполнение обязательств по Конвенции

МСЭ и Регламента радиосвязи (РР).

В МСЭ существует три сектора: Сектор радиосвязи, в состав которого входит Бюро радиосвязи (БР) и Радиорегламентарный комитет (РРК), Сектор развития электросвязи, в состав которого входит Бюро развития электросвязи (БРЭ), и Сектор стандартизации электросвязи.

Основным документом, определяющим порядок управления использованием РЧС на

международном уровне, является РР МСЭ, содержащий Международную таблицу распределения частот (МТРЧ) между службами. На национальном уровне в России основными документами, определяющими порядок управления РЧС, являются национальная

таблица распределения частот (НТРЧ), Решения Государственной комиссии по радиочастотам (ГКРЧ) и Положения о порядке рассмотрения материалов, проведения экспертизы

и принятия решения о выделении полос радиочастот для РЭС и высокочастотных устройств и о порядке проведения экспертизы, рассмотрения материалов и принятия решения о присвоении (назначении) радиочастот или радиочастотных каналов для РЭС в пределах выделенных полос радиочастот.

Сети следующего поколения

Сети следующего поколения (Next Generation Network, NGN) представляют собой новую концепцию сети, комбинирующую в себе голосовые функции, качество обслуживания (QoS) и коммутируемые сети с преимуществами и эффективностью пакетной сети. Сети NGN означают эволюцию существующих телекоммуникационных сетей, отражающуюся в слиянии сетей и технологий. Благодаря этому обеспечивается широкий набор услуг начиная с классических услуг телефонии и кончая различными услугами передачи данных или их комбинацией.

Архитектура NGN. Основные понятия

Главная архитектурная особенность NGN заключается в том, что передача и маршрутизация пакетов и базовые элементы транспортной инфраструктуры (каналы, маршрутизаторы, коммутаторы, шлюзы) физически и логически отделены от устройств и механизмов управления вызовами и доступом к услугам. Данный тезис является общепризнанным и достаточно подробно раскрыт на страницах «Концептуальных положений».

Перспективная архитектура NGN показана на рис. 1, «позаимствованном» из документа . Здесь отчетливо видна иерархия сетевой инфраструктуры: транспортный уровень (плоскость коммутации), уровень управления коммутацией и передачей информации (плоскость программного управления), наконец, уровень управления услугами (плоскость интеллектуальных услуг и эксплуатационного управления).

Плоскость абонентского доступа , базируется на трех средах передачи: металлическом кабеле, оптоволокне и радиоканалах. В плоскости коммутации решается основная задача транспортного уровня - коммутация соединений и прозрачная передача информации.. В указанной плоскости находится и структура мультисервисных узлов доступа. Над ними располагаются программные коммутаторы (Softswitch) , составляющие плоскость программного управления и служащие для обработки сигнальных команд, маршрутизации вызовов и управления потоками. Выше находится плоскость интеллектуальных услуг и эксплуатационного управления . услугами содержащая в себе логику предоставления услуг и доступа к приложениям.

Рис.1. соответствует сегодняшним реалиям операторов, которые работают в условиях, когда 5 - 10 % абонентов желают получить самые современные услуги широкополосного доступа, а некоторая часть абонентов дожидается установки обычного телефона.

Транспортная сеть является опорной сетью в многослойной архитектуре телекоммуникационной сети со свободно надстраиваемыми слоями услуг, поэтому она должна очень надежно работать. Транспортная сеть должна быть высокопроизводительной и строится на основе оптико-волоконных линий связи, что позволяет обеспечить большую скорость обмена и избежать заторов и коллизий при маршрутизации потоков.

Рисунок 1 Архитектура сети следующего поколения

Как отмечается в концептуальных положениях построения сетей NGN , архитектура сетей NGN предполагает создание мультисервисной сети, причем первой фазой этого процесса является развертывание структуры мультипротокольной коммутации (MPLS). Основные преимущества технологии MPLS заключены в возможности легкой организации виртуальных частных сетей второго и третьего уровней (MPLS VPN), в обеспечении эффективного использования пропускной способности каналов связи и гарантированного качества услуг.

Организация VPN третьего уровня - наиболее востребованный способ применения MPLS. В этом случае для создания персональной таблицы маршрутизации каждого клиента используются так называемые виртуальные маршрутизаторы (Virtual Routing Instance). Протокол BGP обеспечивает взаимодействие клиента с пограничным маршрутизатором MPLS-сети и трансляцию меток, идентифицирующих конкретную VPN. Поскольку маршрутизаторы ядра сети, поддерживающие виртуальные каналы передачи, не обращаются к информации о той или иной VPN, данная архитектура имеет высокую масштабируемость.

Подобные услуги, называемые еще BGP VPN, используются теми подписчиками, которые нуждаются в передаче информации на третьем уровне и предпочитают перепоручить процессы маршрутизации внешнему провайдеру. Существенным плюсом модели BGP VPN является независимость типов абонентских интерфейсов на оконечных устройствах виртуальной сети.

Технология VPN второго уровня позволяет операторам заниматься передачей информации второго уровня через ядро IP-MPLS. Вот основные виды услуг, которые можно развернуть в рамках такой структуры: прозрачная передача различных каналов второго уровня поверх MPLS, услуга виртуального частного канала (которая обеспечивает передачу сигнализации и автоматическое обнаружение пользовательских устройств), объединение LAN с помощью виртуальных коммутаторов (Virtual Switch Instance). Поверх VPN второго уровня обычно передаются каналы Ethernet, ATM, frame relay, PPP и HDLC.

В общем виде мультисервисные сети описываются двухуровневой архитектурой, состоящей из региональной и магистральной (включая межрегиональную) составляющих. На региональном уровне мультисервисная сеть призвана обеспечивать подключение абонентов и предоставление им как транспортных, так и прикладных услуг (Value Added Services). Кроме того, она может стыковаться с инфокоммуникационными службами других региональных сетей. На магистральном уровне создаваемая NGN должна отвечать за прозрачный транзит конвергентного трафика, получаемого от региональных сегментов.

Что представляет собой типичная сетевая инфраструктура современного оператора связи? По сведениям представителей Cisco, самой распространенной является такая ситуация: оператор одновременно эксплуатирует раздельные платформы передачи, относящиеся к ядру сети. Передача голосового трафика осуществляется по каналам TDM, соединения уровня L2 и резервные подключения осуществляются с помощью технологий ATM и FR, а корпоративные сервисы VPN и услуги доступа в Internet предоставляются на базе IP-протокола. Правда, для развертывания последних ряд операторов уже применяет мультипротокольную технологию коммутации MPLS. Но для реализации всех остальных сервисов в качестве транспортной основы обычно служит каналообразующая технология SDH.

Таким образом, IP- и TDM-сети этих операторов наложены на единую инфраструктуру SDH, в которой преобладает информация каналов TDM. Однако, по результатам исследований аналитиков компании, в 2006 году объем передаваемых пакетных данных сравнялся с объемом трафика TDM.

В традиционных системах передачи (SDH или ATM) принципиальной проблемой является их ориентированность на канальные архитектуры (виртуальные или физические). В них отсутствует гибкость, способность к расширению, что приводит к перегрузке сети и трудностям с интеграцией современных интеллектуальных IP-сервисов. В NGN подобных «узких мест» пока не выявлено, за исключением стандартных проблем, связанных с вводом в промышленную эксплуатацию и тестированием новых технологий и оборудования.

Элементы и основные протоколы сетей NGN

Несмотря на то, что любая коммуникационная ступень мультисервисной сети может использовать различную технику для обработки потоков данных и каждая стадия процесса передачи и распределения может осуществляться в своем стандарте, способы построения конвергентных мультисервисных сетей достаточно сильно канонизированы.

Единственно важное требование при проектировании – необходимость приведения потоков информации к единому формату на границе функциональных составляющих сетей при объединении потоков.

Данные задачи выполняются шлюзами трех типов:

Медиа-шлюзы (Media Gatways, MG) обеспечивают взаимодействие между гетерогенными участками сети

Шлюзы сигнализации (Signaling Gatways, SG) служат для преобразования сигнализации и обеспечивает ее прозрачную передачу между TDM и пакетной сетью. Они терминируют сигнализацию и передают сообщения через сеть IP контроллеру медиа-шлюза или другим шлюзам сигнализации.

Контроллеры медиа-шлюзов (Media Gatway Controllers, MGC или Softswitchs) обеспечивают координацию между шлюзами в соответствии сигнальной информацией, которую они получают от шлюзов сигнализации.

На нижеприведенной схеме при водится пример мультисервисной сети NGN, включающей в себя все вышеописанные элементы.

Рисунок 2 Пример сети следующего поколения

Рассмотрим функции этих элементов более подробно.

Медиа-шлюз это один из ключевых элементов в инфраструктуре мультисервисных сетей. В его задачу входит обеспечить взаимодействие сетей разных стандартов.

Основные функции, которые выполняетмедиа-шлюз, заключаются в том, что он

· служит мультисервисным терминатором, например, для цифровых каналов Т1/Е1, сетей Ethernet, ATM и т. п.;

· подавляет эхо;

· определяет и генерирует тональную частоту.

Наряду с вышеописанным медиа-шлюз может также включать функциональность для удаленнного доступа, маршрутизации, виртуальных частных сетей, фильтрования трафика TCP/IP и т.п. Все эти функции требуют значительной вычислительной мощности, поэтому такие шлюзы базируются на высокопроизводительных процессорах цифровой обработки сигналов (DSP).

Шлюз сигнализации отвечает за обработку сигнальной информации от сетей с коммутацией каналов (обычно SS7) и передачу ее шлюзуMGC по управляемой IP-сети. Он также позволяет удаленным устройствам в IP-сети обмениваться сообщениями с ТфОП для установки вызова. В дальнейшем преобразованные сигнальным шлюзом потоки могут обрабатываться на MGC, обеспечивая таким образом координацию между шлюзами в соответствии с сигнальной информацией.

Контроллер медиа-шлюза

Еще один ключевой элемент в инфраструктуре мультисервисных сетей. Он служит посредником при обработке сигнальной информации между сетями с коммутацией каналов и коммутацией пакетов. Обрабатывает и управляет вызовами от шлюзов MG, осуществляет управление потоками при передаче голоса и данных. Имя «программный коммутатор» получил потому, что выполняемые им функции реализуются программно. Если говорить об исполнении MGС, то он представляет обычный компьютер серверного типа, на котором функционирует ряд обслуживающих сеть программ. Одной из них является приложение Media Gatway Controller. Не смотря на слово «коммутатор», он в действительности не выполняет никаких коммутирующих функций. Одной из основных функций MGС является управление вызовами которое включает в себя в типичном случае маршрутизацию вызовов, аутентификацию пользователя, установление и разрыв соединения, сигнализацию. В качестве посредника Softswitch должен «понимать» со стороны сетей ТфОП протоколы управления вызовами (SS7, V5, GR-303), со стороны пакетных сетей протоколы H.323, SIP, MGCP, MEGACO.

Каждая сигнальная система имеет свой собственный уникальный набор характеристик, что делает взаимодействие между ними достаточно сложным. Softswitch служит интерфейсом между сетями с разными сигнальными системами, обеспечивая взаимодействие либо прямо, либо с помощью шлюза SG. С точки зрения сети с коммутацией каналов Softswitch заменяет средства управления обслуживанием вызовов АТС. Он может поддерживать протоколы SS7, E-DSS1, R1.5, V5, выполняя функции транзитного пункта сигнализации STP или оконечного пункта SP сети сигнализации ОКС-7. Причем, делать это он может более дешевым, простым и удобным в эксплуатации образом, придуманным рабочей группой SIGTRAN, входящей в IETF. Этой группой разработаны средства транспортировки сообщений SS7 по IP-сетям. Это протокол передачи информации для управления потоками (Stream Control Transmission Protocol, SCTP), поддерживающий перенос сигнальных сообщений между конечными пунктами сигнализации SP в IP-сети; три новых протокола M2UA, M2PA, M3UA для выполнения функций MTP; протокол SUA уровня адаптации для пользователей SCCP, поддерживающий перенос по IP-сети средствами SCTP сигнальных сообщений пользователей SCCP SS7 (например, TCAP или INAP).

Для взаимодействия Softswitch между собой могут применяться два протокола: SIP (IETF) и BICC (ITU-T). Сегодня на роль основного протокола взаимодействия более претендует SIP.

Основными протоколами сигнализации для управления соединениями, используемыми Softswitch, являются SIP, SS7, H.323.

Основными протоколами сигнализации для управления медиа-шлюзами являются MGCP и MEGACO/H.248.

Рисунок 3 Основные протоколы NGN

Литература:

1. В.Михайлов.Шляхи побудови наступного покоління мереж NGN в Україні" (доповідь на науково-технічній раді Держкомзв"язку,УНДІЗ,2003 р.)

2. А.Есауленко. Доказательства в пользу NGN.- Сети # 24 / 2003.

3. Концептуальные положения по построению мультисервисных сетей на ВСС России, Министерство связи России.- (http://www.minsvyaz.ru/img/uploaded/2002020610512757.pdf).

4. Softswitch Научно-исследовательский институт телекоммуникаций. http://www.niits.ru:8100/themes/convergension/convergension.htm

5. NGN сеть в Киеве.- http://siemens-ic.com.ua/news/0302.htm

6. Б.С.Гольдштейн, О.П.Орлов, А.Т.Ошев, Н.А. Соколов. Модернизация сетей в эпоху NGN// Вестник связи - .2003,- №6.

7. Gartner . "В мире телекоммуникаций назрела революционная ситуация".- http://celler.ru/forum/index/forum-22/topic-7420.html


Похожая информация.


Но в конце XX века из-за различных причин (дороговизна ISDN-оборудования, бурное развитие IP-сетей , появление новых приложений и услуг) идея формирования глобальной сети ISDN потерпела неудачу. На смену концепции сетей ISDN, пришла концепция Сетей Следующего Поколения, NGN. В отличие от сети ISDN, сеть NGN опирается на сеть передачи данных на базе -протокола.

Согласно простейшему определению, сеть NGN - это открытая, стандартная пакетная инфраструктура, которая способна эффективно поддерживать всю гамму существующих приложений и услуг, обеспечивая необходимую масштабируемость и гибкость, позволяя реагировать на новые требования по функциональности и пропускной способности.

Принципы NGN

Основное отличие сетей следующего поколения от традиционных сетей в том, что вся информация, циркулирующая в сети, разбита на две составляющие. Это сигнальная информация, обеспечивающая коммутацию абонентов и предоставление услуг, и непосредственно пользовательские данные, содержащие полезную нагрузку, предназначенную абоненту (голос, видео, данные). Пути прохождения сигнальных сообщений и пользовательской нагрузки могут не совпадать.

Сети NGN базируются на интернет технологиях включающих в себя протокол и технологию MPLS . На сегодняшний день разработано несколько подходов к построению сетей IP-телефонии, предложенных организациями ITU-T и IETF : H.323 , SIP и MGCP

H.323

Первый в истории подход к построению сети IP-телефонии на стандартизованной основе предложен Международным союзом электросвязи в рекомендации Н.323 . Сети, построенные на базе протоколов H.323 , ориентированы на интеграцию с телефонными сетями и могут рассматриваться как наложенные на сети передачи данных сети ISDN . Например, процедура установления соединения в данных сетях базируется на Рекомендации ITU-T Q.931 .

SIP

Изначально предпочтение отдавалось протоколу H.323 , но после выявления ряда проблем с NAT traversal и «local loop», более широкое применение стал получать протокол SIP . На данный момент протокол SIP широко применяется для предоставления VoIP услуг.

Одной из важнейших особенностей протокола SIP является именно его независимость от транспортных технологий.

MGCP

Третий метод построения сетей NGN связан с принципом декомпозиции шлюзов. При использовании протокола MGCP , каждый шлюз разбивается на три функциональных блока:

  • Media Gateway - отвечает за передачу пользовательских данных
  • Signalling Gateway - отвечает за передачу сигнальной информации
  • Call Agent - устройство управления, где заключен весь интеллект декомпозированного шлюза.

При построении сети NGN, может использоваться как отдельный подход, так и их сочетание.

SoftSwitch

На сегодняшний день, основным устройством для голосовых услуг в сетях NGN является Softswitch - так называется программный коммутатор, который управляет VoIP сессиями. Также немаловажной функцией программного коммутатора является связь сетей следующего поколения NGN с существующими традиционными сетями ТфОП , посредством сигнального(SG) и медиа-шлюзов(MG) , которые могут быть выполнены в одном устройстве. В терминах сети на базе протокола H323, Softswitch выполняет функции gatekeeper, в терминах сети на базе MGCP, он выполняет функции Call Agent.

В архитектуре IMS программный коммутатор имеет название MGCF и выполняет функцию взаимодействия сетей пакетной коммутации с сетями канальной коммутации .

Переход к NGN

В настоящее время проблема перехода от традиционных сетей с коммутацией каналов к сетям с коммутацией пакетов (NGN) является одной из наиболее актуальных для операторов связи. Перспективные разработки в области IP-коммуникаций связаны с созданием комплексных решений, позволяющих при развитии сетей следующего поколения сохранять существующие подключения и обеспечить бесперебойную работу в любой сети телефонного доступа: на инфраструктуре медных пар, по оптическим каналам, на беспроводной (WiMAX , WiFi) и проводной (ETTH , PLC и т. д.) сети. Согласно концепции «неразрушающего» перехода к NGN , подобные решения должны позволять точечно переводить отдельные сегменты на новые технологии без кардинальной смены всей структуры сети. В частности, решения для «неразрушающего» перехода к NGN должны отвечать следующим требованиям:

  • интеграция в существующую сеть оператора, поддержка не только новой транспортной технологии, но и привычной модели управления;
  • полностью модульная архитектура с возможностями географического распределения и резервирования;
  • возможность гибкого увеличения производительности путем приобретения лицензий и добавления в систему серверов;
  • возможность внедрения новых видов услуг в минимальные сроки;
  • соответствие требованиям законодательства об архитектуре сети.

Но в целом, концепция перехода от сетей с коммутацией каналов к сетям с коммутацией пакетов на базе программного коммутатора , а в дальнейшем к сети на базе архитектуры IMS , - ясна.

Производители оборудования

В числе производителей оборудования для сетей связи следующего поколения (NGN) такие крупные мировые вендоры как: Alcatel-Lucent , Avaya , Cisco Systems , Huawei , Siemens и др.

Одним из крупнейших российских производителей NGN-решений является компания МФИ Софт .

Ссылки

  • Дмитрий Чижиков Мультисервисные сети следующего поколения: потребности рынка, принципы, мониторинг . www.iksmedia.ru (13 марта 2008). Архивировано из первоисточника 6 августа 2012. Проверено 5 июля 2012. (рус.)
  • Краткий обзор архитектуры IMS (англ.)
  • IMS форум (англ.)
  • Полный список спецификаций 3GPP IMS (англ.)

Примечания


Wikimedia Foundation . 2010 .

  • Анно, Жан-Жак
  • Сравнение BitTorrent-программ

Смотреть что такое "NGN" в других словарях:

    NGN - puede referirse a: Las siglas de Next Generation Networking (Red de la próxima generación). El código ISO 4217 para la divisa de Nigeria, el naira. El código IATA para el aeropuerto civil de Narganá, en Panamá. Esta … Wikipedia Español

    NGN - Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Sigles d’une seule lettre Sigles de deux lettres > Sigles de trois lettres Sigles de quatre lettres … Wikipédia en Français

    NGN - This disambiguation page lists articles associated with the same title. If an internal link led you here, you may wish to change the link to point directly to the intended article. NGN can mean multiple things: Next Generation Networking, b … Wikipedia

    NGN - Die Abkürzung NGN steht für: Naira, Währung Nigerias, als Währungscode nach ISO 4217 Netz gegen Nazis, ein Internetportal der Amadeu Antonio Stiftung Next Generation Network, Begriff aus der Telekommunikation Nouvelle Guinée Néerlandaise,… … Deutsch Wikipedia

    NGN - In currencies, this is the abbreviation for the Nigerian Naira. The currency market, also known as the Foreign Exchange market, is the largest financial market in the world, with a daily average volume of over US $1 trillion … Investment dictionary

    NGN - Next Generation Network (Computing » Telecom) **** Nigerian Naira (Regional » Currencies) * National Golf Network (Community » Sports) * Non Geographical Numbers (Governmental » US Government) * Nargana, Panama (Regional » Airport Codes) *… … Abbreviations dictionary


В последние 10 лет быстрыми темпами развиваются и получают широкое распространение новые услуги связи, улучшается качество и традиционных услуг. При этом для реализации различных сервисов требуется соответствующее развитие сетей связи и, в частности, их транспортной инфраструктуры. Мировое телекоммуникационное сообщество пришло к выводу о необходимости создания сетей нового поколения, так называемых NGN (Next Generation Networks, см. PC Week/RE, № 36/2005, с. 26).

Что такое NGN?

Анализ показывает, что производители телекоммуникационного оборудования и операторы связи зачастую используют термин NGN как маркетинговый слоган для обозначения новых решений, отличающихся от традиционных на базе технологии TDM (Time Division Multiplexing). При этом NGN означает лишь, что в будущем сети должны быть какими-то другими. В различных странах и в различное время термин NGN наполнялся самым разным содержанием.

Как отмечается в отчете “Перспективы российского рынка мультисервисных транспортных сетей нового поколения (NGN)”, подготовленного аналитической компанией “Современные Телекоммуникации” (www.modetel.ru), сложность исследования рынка NGN заключается в том, что его участники, в том числе и российские, исходя из своих конкретных интересов, под решениями нового поколения зачастую подразумевают и предлагают не только комплексные (полные) системы класса NGN, но и отдельные их компоненты.

“Серьезной проблемой, связанной с NGN в России, является подмена понятия NGN, - подтверждает Александр Кукуджанов, генеральный директор “НАТЕКС Нетворкс”. - Некоторые компании, пытаясь прикрыться этим модным словом, предлагают тот же ISDN или передачу Ethernet по традиционным TDM-сетям, аргументируя это тем, что данная служба позволяет передавать голос и данные”.

В рекомендациях Международного союза электросвязи (МСЭ, или ITU) дано следующее определение Next Generation Network: “NGN - это сеть с коммутацией пакетов, способная предоставлять телекоммуникационные услуги посредством широкополосных транспортных технологий, поддерживающих качество обслуживания (QoS), в которой обеспечиваемая функциональность не зависит от используемых транспортных технологий”.

Архитектура NGN

Отличительной чертой модели NGN, предлагаемой сектором стандартизации электросвязи МСЭ (МСЭ-T), является функциональное деление на два уровня: услуг и транспортный. Уровень услуг реализует прикладные функции, связанные с востребованными услугами, например организацией передачи речи, видеоизображения или их комбинации. Транспортный уровень обеспечивает выполнение функции доставки дискретной информации любого типа между любыми двумя географически разнесенными точками. В общем случае на транспортном уровне может использоваться любая технология коммутации пакетов. Однако МСЭ-T считает, что IP-протокол является предпочтительным для организации услуг NGN, так как обладает наибольшей полнотой для реализации задач сетей следующего поколения.

NGN также должны:

  • поддерживать идентификацию и определение местоположения абонента для достижения мобильности услуг;
  • взаимодействовать с имеющимися телекоммуникационными сетями;
  • обеспечивать информационную безопасность и предоставлять различные уровни качества обслуживания.

В то же время в материалах Европейского института стандартов связи ETSI рассматриваются два предельных варианта развития NGN. В первом случае NGN - это самостоятельная глобальная сеть, конкурирующая с телефонной сетью общего пользования (ТфОП), Интернетом и вещательными сетями. Во втором случае глобальная сеть отсутствует, а технология NGN используется для модернизации ТфОП и, возможно, Интернета и сетей вещания.

Согласно “Концептуальным положениям по построению мультисервисных сетей на Взаимоувязанной сети связи [ВСС] России”, утвержденным в 2001 г. Минсвязи РФ, “cети NGN должны обеспечивать предоставление неограниченного набора услуг с гибкими возможностями по их управлению, персонализации и созданию новых услуг за счет унификации сетевых решений”.

Этим документом также определены следующие свойства NGN:

  • мультисервисность, под которой понимается независимость способов предоставления услуг от транспортных технологий;
  • широкополосность, т. е. возможность гибкого и динамического изменения скорости передачи информации в широком диапазоне в соответствии с текущими потребностями пользователя;
  • мультимедийность - способность сети передавать многокомпонентную информацию (речь, данные, видео, аудио) с необходимой синхронизацией этих компонентов в реальном времени и использованием сложных конфигураций соединений;
  • интеллектуальность, т. е. возможность управления услугой, вызовом и соединением со стороны пользователя или поставщика услуг;
  • инвариантность доступа - возможность организации доступа к услугам независимо от используемой технологии;
  • “многооператорность”, под которой понимается участие нескольких операторов в процессе предоставления услуги и разделение между ними ответственности в соответствии с областями деятельности.

NGN - улучшенное сочетание ТфОП и Интернета?

На основе анализа существующих сегодня концептуальных документов и оценок экспертов можно сделать вывод о том, что NGN представляет собой универсальную многоцелевую сеть, предназначенную для передачи речи, изображений и данных с использованием технологии коммутации пакетов.

По сути NGN является результатом слияния Интернета и телефонных сетей, объединяя в себе их лучшие черты. На практике это означает гарантированное качество голосовой связи и передачи данных, включая критически важные приложения.

Таким образом, NGN имеет степень надежности, характерную для ТфОП, и обеспечивает низкую стоимость передачи в расчете на единицу объема информации, приближенную к стоимости передачи данных по Интернету.

По любой из нынешних концепций на транспортном уровне NGN должна обеспечивать создание полносвязанной инфраструктуры для пакетной передачи данных разного типа с поддержкой QoS.

Вместо принятой в традиционных сетях канальной парадигмы, в рамках которой соединения между абонентами строятся по принципу “точка - точка”, в NGN реализуется переход к идеологии виртуальных частных сетей (VPN), организующих доставку сервисов конечному пользователю поверх протокола IP. Следовательно, фундаментом NGN является мультипротокольная/мультисервисная транспортная сеть связи на основе пакетной передачи данных, обеспечивающая перенос разнородного трафика с использованием различных протоколов передачи.

На более высоких уровнях модели OSI сети следующего поколения открывают массу возможностей построения наложенных сервисов поверх универсальной транспортной среды - от пакетной телефонии (VoIP) до интерактивного телевидения и Web-служб. NGN характеризуется доступностью сервисов вне зависимости от местоположения пользователя и применяемых им интерфейсов (Ethernet, xDSL, Wi-Fi и т. д.). Таким образом, любой сервис, созданный в любой точке NGN, становится доступным любому потребителю.

Следует отметить одно обстоятельство, усложняющее анализ рынка оборудования NGN. В настоящее время существует также концепция NGN, в которой ключевое место отведено понятию “услуга”, - NGS (New Generation Services).

Зависимость сетевой инфраструктуры от новых услуг нашла отражение в работах форума 3GPP (3-rd Generation Partnership Project), предложившего в развитие идеологии NGN концепцию IMS (IP Multimedia Subsystem). В соответствии с этой концепцией платформа IMS становится центром сетей следующего поколения, вокруг которого будут формироваться другие уровни функциональной модели NGN.

Нормативные документы NGN

Созданием международных стандартов NGN, как уже отмечалось, занимаются ITU, ETSI и 3GPP. И хотя ведутся они уже не первый год, эта деятельность все еще находится на начальном этапе. В 2004 г. были опубликованы первые рекомендации МСЭ по данному вопросу:

  • Y.2001 (12/2004) “General overview of NGN”;
  • Y.2011 (10/2004) “General principles and general reference model for next generation networks”.

По оценке экспертов, эти рекомендации только контурно очерчивают облик NGN, ставят больше задач для изучения, чем предлагают технических решений. В секторе МСЭ-T намечена широкая программа стандартизации NGN, опирающаяся на большой задел в виде действующих рекомендаций (по оптическим сетям, IP-сетям, мультимедийным службам, качеству обслуживания и др.).

Сегодня стандартизация NGN признана одним из приоритетных направлений работы МСЭ-T на исследовательский период 2005-2008 гг. Так, в программу изучения Исследовательской комиссии № 13 включено четырнадцать вопросов, десять из которых посвящены NGN. Предполагается, что в ближайшие годы серия рекомендаций Y.2000 будет пополняться, а на рынке появятся технические средства NGN, удовлетворяющие этим рекомендациям.

Следует отметить, что разработка стандартов IMS для конвергентных (фиксированных и мобильных) сетей нового поколения, осуществляемая ETSI (комитетом TISPAN - The Telecom & Internet converged Services & Protocol for Advanced Networks) c учетом рекомендаций 3GPP/3GPP2 (3GP Project-2), также находится на начальном этапе. В декабре 2005 г. был опубликован первый, базовый стандарт - ETSI NGN Release 1.

И хотя нормативная база сетей следующего поколения пока развита слабо, внедрения NGN/NGS во всем мире идут полным ходом. По прогнозам Yankee Group, с 2005 по 2008 гг. объем рынка сетевых инфраструктур и услуг нового поколения вырастет с 3,5 до 6,7 млрд. долл., а ежегодные темпы роста составляют 24%. В регионе ЕМЕА рынок будет развиваться с темпами не ниже 22% в год и увеличится с 0,833 до 1,5 млрд. долл.

В нашей стране разработка нормативно-правовой базы отрасли по проблематике NGN ведется с учетом российской специфики и действующих международных стандартов, предлагаемых МСЭ, ETSI и 3GPP. Основными отраслевыми организациями, занятыми созданием нормативно-правовой базы для NGN, являются ЦНИИC в Москве и ЛОНИИС в Санкт-Петербурге.

Необходимо отметить, что в России принятых документов, аналогичных указанным международным рекомендациям, пока нет. В настоящее время ЦНИИС рекомендует российским операторам при разработке стратегий развития в направлении NGN ориентироваться на Y.2001 и Y.2011.

В России действует ряд документов концептуального уровня по вопросам внедрения NGN. Они приняты в разное время начиная с 2001 г. и, по оценкам экспертов, по ряду позиций уже расходятся с современными международными концепциями и рекомендациями. Тем не менее при реализации проектов NGN участникам нашего рынка приходится учитывать кроме упомянутого выше базового материала “Концептуальные положения по построению мультисервисных сетей на ВСС России” требования еще двух документов концептуального уровня - руководящих технических материалов “Модернизация сетей доступа” (2003 г.) и “Принципы построения мультисервисных местных сетей электросвязи” (2005 г.).

До настоящего времени развитие законодательной базы РФ по вопросам связи проходило в основном с учетом традиционной архитектуры сетей. Закон “О связи” и принятые в 2004-2005 гг. на его основе подзаконные акты не учитывают изменения телекоммуникационного ландшафта и, в частности, процессы конвергенции услуг сетей связи и информационных услуг.

В отчете “Современных Телекоммуникаций” отмечается, что NGN целесообразно рассматривать как инфокоммуникационные сети. Последние уже не являются сетями связи, их нельзя однозначно регулировать в соответствии с законом “О связи”. Проблемы регулирования рынка NGN в России касаются также аспектов лицензирования операторской деятельности, построения сетей, присоединения к другим сетям, нумерации, системы оперативно-розыскных мероприятий (СОРM) и др.

Для дальнейшего развития рынка NGN требуется корректировка многих основополагающих документов, регулирующих телекоммуникационный рынок РФ, - закона “О связи"; правил присоединения сетей электросвязи и их взаимодействия; правил оказания услуг связи и т. д.

“Правовое регулирование данного вопроса является одним из сдерживающих факторов развития NGN сетей в РФ, - сетует Александр Кукуджанов. - Исходя из определения NGN представляет собой сеть передачи данных с пакетной коммутацией, обеспечивающую гарантированное качество передачи различной информации с возможностью оказания клиенту неограниченного набора услуг. В то же время согласно “Правилам присоединения сетей электросвязи и их взаимодействия”, утвержденным Правительством РФ 28 марта 2005 г., в нашей стране законодательно разрешены только две группы сетей: телефонные и определяемые по технологии. В первую группу попадают сети фиксированной электросвязи и подвижной радиосвязи, а во вторую помимо сетей передачи данных входят телеграфные и телерадиовещательные. Другими словами, правила основываются на принципе “одна сеть - одна услуга”, до недавнего времени имевшем право на существование, но теперь окончательно устаревшем”.

В итоге операторы ходят под дамокловым мечом: с одной стороны, они вынуждены отвечать на действия конкурентов и потребности рынка, с другой - выполнять законы. Примером может служить недавний конфликт “Россвязьнадзора” и “МТУ-Интела” вокруг проекта “Стрим-ТВ”, связанный с тем, что на текущий момент нет четко регламентирующих документов, определяющих правила трансляции телевизионных программ по сетям передачи данных. Так что уже сейчас целесообразно приступить к переработке действующей нормативно-правовой базы в соответствии с новыми реалиями телекоммуникационного мира.

Как отмечают эксперты “Современных Телекоммуникаций”, настало время для разработки российского закона “Об инфокоммуникациях”, призванного упорядочить отношения при оказании современных инфокоммуникационных услуг.

Место NGN в составе Единой сети электросвязи РФ

Единая сеть электросвязи страны состоит из расположенных на территории РФ сетей связи общего пользования (ССОП); выделенных сетей связи; технологических сетей связи, присоединенных к ССОП; сетей специального назначения и других сетей связи для передачи информации при помощи электромагнитных систем.

Развертывание NGN в РФ будет происходить на двух уровнях - региональном и магистральном (включая межрегиональную составляющую).

На региональном уровне (уровень субъектов РФ и городов) создаются сети нового поколения, призванные обеспечивать подключение абонентов и предоставление им как транспортных, так и прикладных услуг. Кроме того, они могут стыковаться с инфокоммуникационными службами других региональных сетей.

На магистральном уровне (федеральном, уровне федеральных округов РФ) любая создаваемая NGN должна отвечать за прозрачный транзит конвергентного трафика, получаемого от региональных сегментов.

При этом главная архитектурная особенность NGN заключается в том, что передача и маршрутизация пакетов и базовые элементы транспортной инфраструктуры (каналы, маршрутизаторы, коммутаторы, шлюзы) физически и логически отделены от устройств и механизмов управления вызовами и доступом к услугам. Следовательно, в общей архитектуре сетей связи следующего поколения транспортные сети входят в состав NGN и на региональном, и на магистральном уровнях.

В выработке современных подходов к построению транспортных сетей NGN в равной мере заинтересованы операторы как сетей связи общего пользования (стационарных и мобильных), так и технологических сетей связи - ведомственных и корпоративных. Несмотря на то, что технологические сети связи, как правило, имеют определенную профессиональную ориентацию и специализацию, при их развитии также учитывается идеология NGN.

В России действует в общей сложности несколько тысяч операторов сетей связи. Поэтому в рамках данной статьи для анализа основных сегментов телекоммуникационного рынка (фиксированные и технологические сети, сети подвижной связи и др.), в которых актуально применение NGN, были выбраны только наиболее крупные из них.

Рынок фиксированной связи - движение к Triple Play

На российском телекоммуникационном рынке набирает силу мировая тенденция интеграции телекоммуникационных и информационных технологий, приведшая к появлению целого спектра услуг нового типа - инфокоммуникационных. Растет интерес конечных потребителей к новым услугам, снижаются доходы операторов от традиционных услуг связи, усиливается конкуренция на всех уровнях операторской деятельности, идет процесс консолидации рынка.

“Показателен пример компании “Дальсвязь”, которая в течение одного года в Магадане произвела замену старых координатных АТС емкостью 200 тыс. номеров на сеть NGN и начала предоставление услуг, - рассказал Сергей Сазонов, директор по работе со стратегическими вендорами фирмы “Verysell Проекты”. - В первое время для абонентов ничего не изменилось: та же телефонная трубка, те же цифры, та же нумерация. Но в перспективе это позволит оператору получить с абонентов немалый доход за счет предложения различных дополнительных видов обслуживания”.

Действительно, такие факторы создают предпосылки к внедрению операторами широкого спектра новых услуг. По статистике операторов, доход от одного пользователя новых телекоммуникационных услуг в несколько раз выше, чем от абонента традиционной телефонии.

Ведущие российские операторы фиксированной связи (филиалы МРК “Связьинвеста”, крупные альтернативные региональные операторы) делают ставку на предоставление услуг Triple Play, которые продвигаются ими на рынок как услуги NGN (или NGS).

Внедрение Triple Play обеспечивает предоставление услуг по доставке видео и различного рода контента наряду с традиционными услугами передачи голоса и данных. Как правило, эти решения позволяют предлагать абонентам не только традиционные услуги сетей кабельного телевидения, но и уникальные сервисы, возможные только в пакетных сетях.

Действующие российские операторы сетей, предоставляющих услуги Triple Play, уже, как правило, создали и используют мультисервисные транспортные сети следующего поколения, активно внедряют платформы мультисервисного доступа NGN. Но в ближайшее время эти операторы также будут нуждаться в развитии NGN и наращивании их пропускной способности в соответствии с ожидаемым ростом количества абонентов и объемов мультимедиа-трафика. Новым же игрокам рынка Triple Play вначале потребуется построить мультисервисные транспортные NGN высокой пропускной способности.

Следует также отметить, что традиционные операторы фиксированных сетей, внедряя NGN, зачастую преследуют еще одну цель - сокращение капитальных затрат и операционных расходов за счет создания единой мультисервисной транспортной среды для пропуска голосового трафика и трафика передачи данных.

“По сравнению с традиционными телекоммуникационными сетями сети, построенные по технологии NGN, лучше приспособлены для предоставления конвергентных услуг, в которых именно взаимодействие и взаимопроникновение базовых телекоммуникационных сервисов создает новое потребительское качество, - считает Сергей Мишенков, технический директор операторской компании АСВТ. - Сегодня такие услуги нужны и частному, и корпоративному пользователю, и спрос на них будет только расти”.

Этим, по его мнению, и обусловлен серьезный интерес российских операторов связи к технологии NGN. Вместе с тем в нынешней нормативной базе о конвергентных услугах как-то забыли. “Правда, первые шаги по исправлению этой ситуации заметны уже сейчас, например, появилось понятие технологически связанных услуг, - отметил г-н Мишенков. - Вероятно, именно в таком направлении и будет развиваться нормативная база в ближайшие годы”.

Рынок сотовой мобильной связи - движение к 2,5G/3G

Системы подвижной связи являются одним из наиболее значимых и динамично развивающихся сегментов телекоммуникационного рынка страны, а также одним из самых крупных сотовых рынков в мире. В РФ более 98% рынка подвижной связи занимают операторы, работающие в стандарте GSM (900/1800 МГц). Из других цифровых стандартов сотовой связи перспективы развития имеет IMT MC 1Х в диапазоне 450 МГц.

Операторы сетей GSM в условиях приближающегося насыщения рынка активно внедряют решения 2,5G - сети пакетной передачи данных GPRS и EDGE. Такое развитие российского рынка сотовой связи потребует от операторов сетей GSM/GPRS/EDGE и IMT-MC 1Х EV-DO значительного увеличения мощности транспортной инфраструктуры (на региональном и макрорегиональном уровнях), ее оптимизации для пропуска как голосового трафика, так и возрастающего объема трафика данных.

По оценке “ВымпелКома”, который планомерно развертывает сети EDGE в российских регионах, доля капитальных затрат на повышение мощности транспортной сети составит 54% от суммарных затрат на строительство сетей EDGE.

Другой сотовый оператор, “МегаФон-Москва”, при расширении зоны обслуживания в столичном регионе и внедрении EDGE вынужден был направить существенные усилия на развитие транспортной сети. И сделал это, по словам Игоря Парфенова, генерального директора фирмы, на платформе NGN (см. PC Week/RE, № 33/2006, с. 25).

Внедрению IP Core Network операторами сетей GSM и IMT-MC 1X способствует ориентация на внедрение платформы IMS. С 2005 г. решения IMS активно предлагаются российским сотовым операторам ведущими мировыми производителями инфраструктурного оборудования сотовой связи (Ericsson, Huawei Technologies, Lucent Technologies, Siemens и др.). Кроме того, отечественные GSM-операторы (в первую очередь МТС, “ВымпелКом” и “МегаФон”), предполагая участвовать в конкурсе на получение лицензий 3G/UMTS в 2006-2007 гг., будут нуждаться в умножении мощности инфраструктуры своих транспортных сетей с целью развертывания на их основе новых сотовых сетей и обеспечения возможности пропуска значительных объемов мультимедийного трафика.

Следовательно, ведущие российские операторы сетей GSM/GPRS/EDGE (а в ближайшем будущем - и сетей 3G/UMTS), как и операторы сетей IMT-MC 1Х EV-DO, являются потенциальными потребителями решений по созданию мультисервисных транспортных сетей нового поколения (или IP Core Network).

Аренда цифровых каналов смещается в сторону IP VPN

Высокие цены в России на аренду выделенных цифровых каналов (магистральных и внутризоновых) и соответственно высокая стоимость развертывания корпоративных сетей связи на основе выделенных каналов способствуют росту рынка IP VPN.

Услуга IP VPN очень удобна для корпоративных пользователей, имеющих несколько офисов с локальными сетями и желающих объединить эти сети в единое информационное пространство, защищенное от публичного трафика технологией VPN.

Между территориально удаленными сегментами корпоративной сети через каналы IP VPN возможна передача любой информации, передаваемой по протоколу IP. Количество точек включения в VPN не ограничено. Услуга IP VPN базируется на использовании ресурсов мультисервисной транспортной сети IP MPLS.

В 2005 г. в РФ наблюдался взрывообразный рост спроса со стороны крупных и средних предприятий на услуги IP VPN. По данным “Росбизнесконсалтинга”, среднегодовой темп роста услуг IP VPN оценивался в 25%.

В секторе IP VPN преобладают две явные тенденции - увеличение пропускной способности имеющихся портов и быстрое расширение географии предоставления услуги. По оценкам операторских компаний, услуга IP VPN сегодня одна из самых востребованных на российском рынке передачи данных.

Услуги IP VPN предлагают практически все крупные российские операторы передачи данных, действующие в Москве и Санкт-Петербурге (“Эквант”, “ТрансТелеКом”, “РТКомм”, “Голден Телеком”, МРК “Связьинвеста”, “Комстар - ОТС” и многие другие). Поскольку иметь IP VPN в своем портфеле услуг стало престижно, об их предоставлении заявляют и менее крупные операторы.

Объем сегмента IP VPN, по оценкам Boston Consulting Group, в 2005 г. составил около 70-80 млн. долл. В 2006 г. объем и доля VPN среди прочих услуг связи будет только увеличиваться. Это обусловлено взрывным ростом спроса как собственно на организацию высокоскоростных защищенных корпоративных сетей, так и на увеличение объемов всех видов передаваемой информации (данных, голоса и видео).

Таким образом, развитие сетей IP VPN российскими операторами способствует росту спроса с их стороны на решения для мультисервисных транспортных сетей NGN на базе IP MPLS.

Технологические сети держат курс на NGN

Один из значимых сегментов российского телекоммуникационного рынка, который в условиях экономического роста в стране также нуждается в адекватном развитии и внедрении новых технологических решений, представляют технологические сети связи (ТСС) - ведомственные и корпоративные.

Общие проблемы модернизации ТСС (с учетом тенденций NGN) рассмотрим на примере территориально распределенных сетей крупных российских корпораций и ведомств (нефтегазового, энергетического, транспортного комплексов).

Для ТСС этих ведомств характерны следующие особенности, которые в основном и определяют специфические проблемы, возникающие при их модернизации. Типичная архитектура - сеть вытянута вдоль основных коммуникаций ведомства, что определяет большое количество точек ввода-вывода информации и переприемов (транзитов) на таких сетях. Коммутационное оборудование чаще всего представлено различными системами (от электромеханических до самых современных), как правило, от разных производителей. Отмечается большая номенклатура применяемых интерфейсов и протоколов сигнализации.

Исторически сложилось так, что каждое ведомство в РФ имеет собственную (а в ряде случаев и не одну) систему сигнализации. При модернизации ТСС необходимо решить, какие из унаследованных интерфейсов и протоколов и до какого момента сохранятся в сети, а также какие стандартные интерфейсы и протоколы придут им на смену.

Именно эти вопросы считаются в настоящее время наиболее существенными при выработке стратегии развития корпоративных сетей связи. Причем модернизация сотен узлов и тысяч линий связи в ТСС должна производиться без перерывов в информационном обеспечении управляющих структур и должностных лиц технологической связью.

Крупные корпорации, как правило, имеют лицензии на оказание различных услуг связи, включая местную телефонную связь, сдачу каналов в аренду, использование космических ретрансляторов, предоставление услуг междугородной и международной связи. При проведении модернизации ТСС сегодня закладываются самые перспективные технологические решения, что позволяет корпорациям успешно конкурировать с другими операторами в зоне действия ТСС.

В результате модернизации современная ведомственная (корпоративная) сеть должна предоставлять, а каждый корпоративный пользователь получать весь спектр услуг для технологического, общепроизводственного и коммерческого применения. При этом необходимо обеспечить надежность и оперативность связи с параметрами, соответствующими международным рекомендациям. Такая сеть формирует единое информационное пространство ведомства (корпорации), в котором пользователь может подключиться к ней из любой точки и получить все доступные в рамках должностных полномочий услуги (телефонии, передачи данных, аудио- и видеоконференций, доступа в междугородные и международные сети, контролируемого доступа в Интернет и т. д.).

Необходимость поддержания постоянной готовности сетей и систем, опережающей переподготовки пользователей и обслуживающего персонала, существенные капитальные затраты на приобретение оборудования нового поколения определяют целесообразность поэтапной эволюции сложных корпоративных сетей к NGN-перспективе.

“Для крупных территориально распределенных организаций, внедряющих у себя современные ИС, сети NGN интересны прежде всего как хорошо управляемая гибкая телекоммуникационная инфраструктура, позволяющая предприятию тонко настраивать обработку разных видов трафика с учетом не только его типа, но и специфических потребностей конкретных прикладных программ, - считает Григорий Сизоненко, генеральный директор инновационно-внедренческой компании ИВК. - Причем выбранный уровень сервиса фиксируется в соглашении о качестве обслуживания (Service Level Agreement, SLA) и гарантируется оператором при любых изменениях нагрузки на сеть. Таким образом, NGN берет на себя часть функций, за которые традиционно отвечает инфраструктурное ПО класса middleware. При этом режимы работы инфраструктурного и прикладного ПО должны быть увязаны с соответствующими параметрами SLA. Следовательно, возникает задача согласованного управления NGN, инфраструктурой middleware и прикладным ПО, а для этого необходима тесная интеграция систем управления всеми “слоями” ИС. Разработка модулей интеграции требует высокой квалификации, и этим вполне могли бы заняться российские разработчики ПО”.

“Оглядываясь назад, я прихожу к уверенности, что 80% NGN-услуг можно реализовать и на так называемых традиционных сетях, - утверждает Сергей Сазонов. - Пусть это будет дороже, но технически вполне выполнимо. NGN - это новое слово в маркетинге. Сейчас все поставщики имеют что-то от NGN”.

Действительно, по оценке Александра Гольцова, технического директора компании “Энвижн Групп”, уже несколько лет отечественные системные интеграторы активно предлагают проекты NGN как для корпоративных пользователей, так и для операторов связи. При этом такие решения позволяют вводить услуги Triple Play в кратчайшие сроки.

“В арсенале интеграторов зачастую присутствуют решения как для операторов, строящих сети с нуля, так и для плавного перехода к сетям следующего поколения, - отметил он. - Но реализуют такие решения только лидеры российского рынка системной интеграции, в первую очередь потому, что они сложны, операторы идут на эти проекты очень осторожно и доверяют их только тем, кто имеет значительный опыт работы на таком уровне”.

Впрочем, надо учесть и другие серьезные препятствия. “С одной стороны, есть операторский опыт, в первую очередь европейский, в построении таких сетей, есть достаточно большой выбор и поддержка со стороны производителей, - подчеркнул вице-президент компании BCC Михаил Талов. - С другой стороны, нет отлаженной бизнес-модели предоставления услуг на российском рынке, поэтому операторы связи при выводе на рынок новых услуг зачастую действуют методом проб и ошибок”.

Несмотря на некоторую слабость нормативной базы и значительный риск освоения сложных систем, в стране уже реализованы десятки NGN-структур. Правда, по оценке экспертов, при таких темпах внедрения процесс перехода к NGN в России по экономическим, организационным, законодательным и иным причинам может растянуться на несколько десятилетий. Но отечественные специалисты не теряют надежды. “Я считаю, что требования рынка и здравый смысл победят бюрократическую машину и технологии NGN будут “легализованы”, - убежден г-н Кукуджанов. - Это понимают все игроки рынка, и я уверен, что соответствующие дополнения в закон (“О связи”. - Прим. ред.) будут обязательно приняты”.

Массовое внедрение сетей следующего поколения в России, по мнению Талова, будет стимулироваться в первую очередь стремлением самих операторов выходить на рынок с новыми услугами и востребованностью таких услуг со стороны рынка.

РЕФЕРАТ

“NGN – СЕТЬ СЛЕДУЮЩЕГО ПОКОЛЕНИЯ

МОЕ ПЕРВОЕ ВПЕЧАТЛЕНИЕ”

Выполнил: Ле Чан Дык

Группа: Мт-95

Санкт-Петербург

1. Что такое NGN

2. Архитектура NGN

2.1 Схема 3 уровня

2.2 Функции уровней

3.1 На основе Softswitch

3.2 На основе IMS

4. Протоколы (на основе Softswitch)

4.2 Основные протоколы

5. Услуги в NGN

1. Что такое NGN

1.1 Откуда появилось понятие NGN или почему нужно NGN

Сегодняшним клиентам рынка инфокоммуникационных услуг требуется широкий класс разных служб и приложений, предполагающий большое разнообразие протоколов, технологий и скоростей передачи. При этом пользователи преимущественно выбирают поставщика служб в зависимости от цены и надежности продукта.

В существующей ситуации на рынке инфокоммуникационных услуг сети перегружены: они переполнены многочисленными интерфейсами клиентов, сетевыми слоями и контролируются слишком большим числом систем управления. Более того, каждая служба стремится создать свою собственную сеть, вызывая эксплуатационные расходы по каждой службе, что не способствует общему успеху и приводит к созданию сложной сети с тонкими слоями и низкой экономичностью. При эволюции к прозрачной сети главной задачей является упрощение сети – это требование рынка и технологии. Большие эксплуатационные затраты подталкивают операторов к поиску решений, упрощающих функционирование, при сохранении возможности создания новых служб и обеспечении стабильности существующих источников доходов, подобных речевым службам.

Указанные нюансы и проблемы, а также возрастающая конкуренция требует от компаний повышения эффективности бизнеса и гибкости управления, что предполагает следующие действия:

  • Создание единой информационной среды предприятия.
  • Формирование распределенных прозрачных и гибких мультисервисных корпоративных сетей.
  • Оптимизация управления IT-инфраструктурой.
  • Использование современных сервисов управления вызовами.
  • Предоставление мультисервисных услуг.
  • Управление услугами в реальном времени.
  • Поддержка мобильных пользователей.
  • Мониторинг качества предоставляемых услуг и работы сетевого оборудования.

Потребность операторов сетей связи получать все новые прибыли заставляет их задуматься над созданием сети, которая позволяла бы реализовывать потенциальные возможности:

  • Как можно быстрее и дешевле создавать новые услуги с тем, чтобы постоянно привлекать новых абонентов.
  • Уменьшать затраты на обслуживание сети и поддержку пользователей.
  • Независимость от поставщиков телекоммуникационного оборудования.
  • Быть конкурентоспособными: либерализация в инфокоммуникационной отрасли и достижения в новейших технологиях привели к появлению новых операторов связи и сервис-провайдеров, предлагающих более дешевый и широкий спектр услуг.

Здесь и появляется первый раз понятие «сеть следующего/нового поколения» (NGN), т.е. сеть, которая оптимально удовлетворяла бы требованиям операторов в повышении прибыли.

Тогда что такое сеть следующего поколения NGN ?

Сети следующего поколения – концепция построения сетей связи, обеспечивающих:

Представление неограниченого набора услуг с гибкими возможностями по их управлению, персонализации и созданию новых услуг.

Унификацию сетевых решений, предполагающая реализацию универсальной транспортной основы с распределенной пакетной коммутацией.

- Вынесение функций предоставления услуг в оконечные сетевые узлы

- Интеграцию с традиционными сетями связи.

В чем суть идеи сети NGN ?

Общая идея сети NGN – это предоставление:

Ø Любой инфокоммуникационной услуги

Ø В любое время

Ø В любой точке пространства

1.2 Фундаментальные признаки-характеристики

Сеть NGN характеризуется следующими фундаментальными признаками:

Построена на принципах коммутации пакетов;
- отделение функции управления соединением от среды передачи, вызова от сессии, приложения от сервиса;
- отделение плоскости управления сервисами от транспортной инфраструктуры, предоставление открытых интерфейсов;
- поддержка широкого спектра сервисов, приложений и механизмов на основе унифицированных элементов (включая сервисы реального времени, с задержками, потоковые и мультимедийные сервисы);
- широкополосные возможности со сквозной реализацией QoS;
- взаимодействие с существующими сетями с помощью открытых интерфейсов;
- мобильность в широком смысле;
- неограниченный доступ пользователей к разным поставщикам сервисов;
- разнообразие схем идентификации;
- единообразные характеристики для сервисов, ощущаемых пользователем как одни и те же;
- конвергенция фиксированных и мобильных сетей;
независимость функций, связанных с сервисом, от нижележащих (в смысле 7-й уровневой модели OSI) транспортных технологий;
- поддержка различных технологий "последней мили";
- выполнение всех регламентных требований, например, для аварийной связи, защиты информации, конфиденциальности, и т. д.

1.3 NGN: принципы, требования, возможности

В основу концепции NGN заложена идея о создании универсальной сети, которая бы позволяла переносить любые виды информации, такие как: речь, видео, аудио, графику и т.д., а также обеспечивать возможность предоставления неограниченного спектра инфокоммуникационных услуг. Базовым принципом концепции NGN является отделение друг от друга функций переноса и коммутации, функций управления вызовом и функций управления услугами.

Идеологические принципы построения сети нового поколения следующие:

  • во-первых, подключение к сети должно быть максимально простым и удобным, без использования промежуточных систем, при этом использование традиционно применяемых протоколов и сервисов должно быть доступно в прежнем объеме;
  • во-вторых, сначала строится базовая пакетная транспортная сеть на базе компьютерных технологий, обеспечивающих соответствующее качество, надежность, гибкость и масштабируемость, а потом поверх этой сети строится мощный комплекс сервисов.

В итоге все информационные потоки интегрируются в единую сеть.

Требования к перспективным сетям связи:

  • “мультисервисность”, под которой понимается независимость технологий предоставления услуг от транспортных технологий;
  • “широкополосность”, под которой понимается возможность гибкого и динамического изменения скорости передачи информации в широком диапазоне в зависимости от текущих потребностей пользователя;
  • “мультимедийность”, под которой понимается способность сети передавать многокомпонентную информацию (речь, данные, видео, аудио и др.) с необходимой синхронизацией этих компонент в реальном времени и использованием сложных конфигураций соединений;
  • “интеллектуальность”, под которой понимается возможность управления услугой, вызовом и соединением со стороны пользователя или поставщика услуг;
  • “инвариантность доступа”, под которой понимается возможность организации доступа к услугам независимо от используемой технологии;
  • “многооператорность”, под которой понимается возможность участия нескольких операторов в процессе предоставления услуги и разделение их ответственности в соответствии с их областью деятельности.

Возможности сетей NGN:

  • Обеспечение создания, развертывания и управления любого вида служб (известных и еще неизвестных). Это включает службы, использующие любого рода среду с любыми схемами кодирования и сервисами (данных, диалоговыми, одноадресными, многоадресными и широковещательными, передачи сообщений, простой службой передачи данных), в реальном времени и вне реального времени, чувствительные к задержке и допускающие задержку, требующие различной ширины полосы пропускания, гарантированные и нет.
  • Четкое разделение между функциями служб и транспортными функциями, с тем, чтобы обеспечить разъединение служб и сетей, являющееся одной из основных характеристик NGN.
  • Предоставление как существующих, так и новых служб, независимо от типа используемых сети и доступа.
  • Функциональные элементы политики управления, сеансов, медиа, ресурсов, доставки служб, безопасности и т.д. должны быть распределены по инфраструктуре, включая как существующие, так и новые сети.
  • Осуществление межсетевого взаимодействия (interworking) между NGN и существующими сетями, такими как ТфОП, ЦСИС, СПС посредством шлюзов.
  • Поддержка существующих и «предназначенных для работы на NGN» оконечных устройств.
  • Решение проблем миграции речевых служб в инфраструктуру NGN, качества обслуживания (QoS), безопасности.

Обобщенная подвижность, которая позволит обеспечить совместимое предоставление услуг пользователям, то есть пользователь будет рассматриваться как единственное лицо при использовании им различных технологий доступа, вне зависимости от того, какими устройствами он располагает.

1.4 Преимущества и недостатки NGN

Преимущества сети следующего поколения:

  • Предоставление современных высокоскоростных сервисов.
  • Масштабируемость.
  • Совместимость с международными стандартами, доступ по общепринятым интерфейсам (таким, как Ethernet), поддержка традиционных сетевых технологий (ATM, FR и др.).
  • Мультипротокольная поддержка (прозрачность и гибкость).
  • Управление трафиком (Traffic Engineering).
  • Резервирование полосы пропускания.
  • Классификация видов трафика.
  • Управление качеством обслуживания (QoS).
  • Совершенные механизмы защиты (например, MPLS Fast Reroute).

Недостатки сети следующего поколения

  • Отсутствие четкой нормативной базы
  • Взаимодействие оборудования разных поставщиков

2. Архитектура NGN

2.1 Схема 3 уровня

Сети следующего поколения должны предоставлять ресурсы (инфраструктура, протоколы и т.п.) для создания, внедрения и управления всеми видами услуг (существующих и будущих). В рамках NGN основной упор делается на возможность адаптации услуги сервис-провайдерами, многие из которых также обеспечат своим пользователям возможность приспособить свои собственные услуги. Сети нового поколения будут включать в себя API (Application Programming Interfaces), обеспечивающие поддержку разработки, предоставления и управления услугами.

Функциональная модель сетей NGN, в общем случае, может быть представлена тремя уровнями:

  • транспортный уровень;
  • уровень управления коммутацией и передачей информации;
  • уровень управления услугами.

Задачей транспортного уровня является коммутация и прозрачная передача информации пользователя.

Задачей уровня управления коммутацией и передачей является обработка информации сигнализации, маршрутизация вызовов и управление потоками.

Уровень управления услугами содержит функции управления логикой услуг и приложений и представляет собой распределенную вычислительную среду, обеспечивающую следующие потребности:

  • предоставление инфокоммуникационных услуг;
  • управление услугами;
  • создание и внедрение новых услуг;
  • взаимодействие различных услуг.

Особенностью технологии NGN являются открытые интерфейсы между транспортным уровнем и уровнем управления коммутацией.
Трехуровневая модель сети NGN представлена на рисунке

Кроме этих 3 уровня, существует еще один важный уровень –Уровень доступа, который обеспечивает доступ пользователям к ресурсам сети.. Тогда можно считать архитектуру NGN:

Если представить топологию сети NGN в виде набора плоскостей, то внизу окажется плоскость абонентского доступа (базирующаяся, например, на трех средах передачи: металлическом кабеле, оптоволокне и радиоканалах), далее идет плоскость коммутации (коммутации каналов и/или коммутации пакетов). В указанной плоскости находится и структура мультисервисных узлов доступа. Над ними располагаются программные коммутаторы SoftSwitch, составляющие плоскость программного управления, выше которой находится плоскость интеллектуальных услуг и эксплуатационного управления услугами.

2.2 Функции уровней (Рассмотрим на базе Softswitch/NGN)

2.2.1 Уровень достипа –Сети доступа

Функции сети доступа (access network functions) обеспечивают подключение конечных пользователей к сети, а также сбор и агрегацию трафика, поступающего из сети доступа в транспортную магистраль (ядро). Эти функции также реализуют механизмы управления качеством обслуживания QoS, связанные непосредственно с пользовательским трафиком, включая управление буферами, очередями и расписаниями, пакетную фильтрацию, классификацию трафика, маркировку трафика, определение политик обслуживания и формирование профиля передачи трафика.

Основными услугами сети доступа должно являться обеспечение подключения следующих типов абонентов:

  • абоненты аналогового доступа ТФОП;
  • абоненты доступа ЦСИС;
  • абоненты доступа xDSL;
  • абоненты выделенных каналов связи Nx64 кбит/с и 2 Мбит/с;
  • абоненты, использующие для доступа оптические кабельные технологии (PON);
  • абоненты, использующие для доступа структурированные кабельные системы (HFC);
  • абоненты, использующие системы беспроводного доступа и радиодоступа (Wi-Fi).

2.2.2 Транспортный уровень – Транстортные сети

Транспортные функции (transport functions) обеспечивают соединение всех компонент и физически разделенных функций внутри NGN. Эти функции поддерживают передачу медиаинформации, а также информации управления (сигнализации) и технического обслуживания.

Функции управления транспортной сетью (transport control functions) включают функции управления ресурсами и доступом и функции управления присоединением к сети.

+ Функции управления ресурсами и доступом RACFs (Resource and Admission Control Functions) действуют как арбитр между функциями управления услугами и транспортными функциями для поддержки QoS и связаны с управлением транспортными ресурсами в сети доступа и в магистральной транспортной сети. Решение по управлению основывается на информации о требуемом транспорте, соглашениях о заданном уровне обслуживания SLA, правилах сетевой политики, приоритетах услуг и информации о состоянии и использовании транспортных ресурсов.

+ Функции управления подключением к сети NACFs (Network Attachment Control Functions) обеспечивают регистрацию на уровне доступа и инициализацию функций конечного пользователя для услуг доступа NGN.

Транспортный уровень сети NGN строится на основе пакетных технологий передачи информации. Основными используемыми технологиями являются ATM и IP.
Как правило, в основу транспортного уровня мультисервисной сети ложатся существующие сети ATM или IP, т. е. сеть NGN может создаваться как наложенная на существующие транспортные пакетные сети.
Сети, базирующаяся на технологии ATM, имеющей встроенные средства обеспечения качества обслуживания, могут использоваться при создании NGN практически без изменений. Использование в качестве транспортного уровня NGN существующих сетей IP потребует реализации в них дополнительной функции обеспечения качества обслуживания.
В случае, если на маршрутизаторе/коммутаторе ATM/IP реализуется функция коммутации под внешним управлением, то в них должна быть реализована функция управления со стороны гибкого коммутатора с реализацией протоколов H.248/MGCP (для IP) или BICC (для ATM).

В состав транспортной сети NGN могут входить:

  • транзитные узлы, выполняющие функции переноса и коммутации;
  • оконечные (граничные) узлы, обеспечивающие доступ абонентов к мультисервисной сети;
  • контроллеры сигнализации, выполняющие функции обработки информации сигнализации, управления вызовами и соединениями;
  • шлюзы, позволяющие осуществить подключение традиционных сетей связи (ТФОП, СПД, СПС).

Контроллеры сигнализации могут быть вынесены в отдельные устройства, предназначенные для обслуживания нескольких узлов коммутации. Использование общих контроллеров позволяет рассматривать их как единую систему коммутации, распределенную по сети. Такое решение не только упрощает алгоритмы установления соединений, но и является наиболее экономичным для операторов и поставщиков услуг, так как позволяет заменить дорогостоящие системы коммутации большой емкости небольшими, гибкими и доступными по стоимости даже мелким поставщикам услуг.

2.2.3 Уровень управления коммутацией и передачей информации

Задачей уровня управления коммутацией и передачей является управление установлением соединения в фрагменте NGN.
Функция установления соединения реализуется на уровне элементов транспортной сети под внешним управлением оборудования гибкого коммутатора. Исключением являются АТС с функциями MGC, которые сами выполняют коммутацию на уровне элемента транспортной сети.
Гибкий коммутатор должен осуществлять:
♦ обработку всех видов сигнализации, используемых в его домене;
♦ хранение и управление абонентскими данными пользователей,
подключаемых к его домену непосредственно или через оборудование шлюзов доступа;
♦ взаимодействие с серверами приложений для предоставления расширенного списка услуг пользователям сети.
При установлении соединения оборудование гибкого коммутатора осуществляет сигнальный обмен с функциональными элементами уровня управления коммутацией. Такими элементами являются все шлюзы, терминальное оборудование мультисервисной сети [интегрированные устройства доступа (IAD), терминалы SIP и Н.323], оборудование других гибких коммутаторов и АТС с функциями контроллера транспортных шлюзов (MGC).
Для передачи информации сигнализации сети ТфОП через пакетную сеть используются специальные протоколы. Так, для передачи информации сигнализации ОКС7. поступающей через сигнальные шлюзы от ТфОП к оборудованию гибкого коммутатора, используется протокол MxUA технологии SIGTRAN (в то же время в ряде реализаций гибкого коммутатора предусмотрен непосредственный ввод сигнализации ОКС7).
В случае использования на сети нескольких гибких коммутаторов они взаимодействуют по межузловым протоколам (как правило, семейство SIP-T) и обеспечивают совместное управление установлением соединения.
На основании анализа принятой информации и решения о последующей маршрутизации вызова оборудование гибкого коммутатора, используя соответствующие протоколы, осуществляет сигнальный обмен по установлению соединения с сетевым элементом назначения и управляет с использованием протокола Н.248 (для IP коммутации) или BICC (для ATM коммутации) установлением соединения для передачи пользовательской информации. При этом потоки пользовательской информации не проходят через гибкий коммутатор, а замыкаются на уровне транспортной сети.


2.2.4 Уровень управления услугами

Основной услугой, предоставляемой как в классических сетях связи, так и в мультисервисной сети, является передача информации между пользователями сети. Использование пакетных технологий на уровне транспортной сети позволяет обеспечить единые алгоритмы доставки информации для различных видов связи.
Кроме услуг по доставке информации, в мультисервисных сетях реализована возможность поддержки предоставления расширенных списков услуг.
Применительно к услуге телефонии, точкой предоставления дополнительных услуг является оборудование гибкого коммутатора или оборудование серверов приложений.
Для пользователей, использующих терминалы мультимедиа (SIP и Н.323 ТЕ), могут предоставляться различные виды мультимедийных услуг.
Реализация логики обслуживания вызова в ограниченном числе сетевых точек позволяет оптимизировать структуру доступа к услугам, предоставляемым со стороны интеллектуальных сетей связи. Для этой цели на уровне гибкого коммутатора реализуется функция SSP.
Использование пакетных технологий позволяет обеспечивать совместное предоставление расширенного списка услуг вне зависимости от типа доступа, используемого пользователем.
В мультисервисных сетях реализуется возможность предоставления однотипных услуг с различными параметрами классов обслуживания (QoS).
Следует отметить, что на сегодня вопрос взаимодействия между гибким коммутатором и серверами услуг недостаточно проработан на уровне международных стандартов, в связи с чем возможна несовместимость оборудования различных производителей

Пример сети NGN

3. Разные варианты конвергенции NGN

Сети следующего поколения имеют две парадигмы построения: с использованием либо програм-мных коммутаторов (Softswitch) и медиашлюзов (MGW), либо про-граммно-аппаратного комплекса – IMS.

Архитектуры Softswitch и IMS имеют известное уровневое деление (абонентских устройств и транспор-та, управления вызовами и сеансами, серверов приложений), причем границы этих логических уровней проходят в обеих концепциях/архитектурах практически одних и тех же местах. Просто в архитектуре Softswitch обычно изображают сетевые устройства, а архитектура IMS определяется на уровне функций. Идентичны также идея предоставления всех услуг на базе IP-сети и разделение функций управления вызовом и коммутации.

Прежде всего, Softswitch – это оборудование конвергентных сетей. Функция управления шлюзами является здесь доминирующей. В свою очередь, IMS проектировалась в рамках мобильного сообщества 3GPP, полностью базирующегося на IP. Основным ее протоколом является SIP, позволяющий устанавливать одноранговые сессии между абонентами и использовать IMS лишь как систему, предоставляющую сервисные функции по безопасности, авторизации, доступу к услугам и т. д. Функция управления шлюзами и сам медиашлюз здесь лишь средство для связи абонентов 3G с абонентами фиксированных сетей. Причем имеется в виду только телефонная сеть общего пользования.

Протокол SIP, как известно, имеет модификации. Для использования в IMS он был частично доработан и изменен, поэтому может возникнуть ситуация, когда при получении запросов SIP или отправке их во внешние сети в них может обнаружиться отсутствие поддержки соответствующих расширений протокола SIP, что может привести либо к отказу в обслуживании, либо к некорректной обработке вызова.

Зато в IMS частично сглаживаются проблемы совместимости оборудования, присущие «пулу» решений Softswitch, поскольку взаимодействие функциональных модулей регулируется стандартами.

3.1 Softswitch - гибкий программный коммутатор


Softswitch - это устройство управления сетью NGN, призванное отделить функции управления соединениями от функций коммутации, способное обслуживать большое число абонентов и взаимодействовать с серверами приложений, поддерживая открытые стандарты.

SoftSwitch является носителем интеллектуальных возможностей IP-сети, он координирует управление обслуживанием вызовов, сигнализацию и функции, обеспечивающие установление соединения через одну или несколько сетей.

Термин "Softswitch" используется не только для идентификации одного из элементов сети. С ним связаны и сетевая архитектура, и даже в определенной степени сама идеология построения сети. Для нас же важны выполняемые коммутатором Softswitch функции и его способность решить ряд задач, присущих узлам с коммутацией каналов.

В первую очередь коммутатор Softswitch управляет обслуживанием вызовов, то есть установлением и разрушением соединений. Точно так, как это имеет место в традиционных АТС с коммутацией каналов, если соединение установлено, то эти функции гарантируют, что оно сохранится (с установленной вероятностью) до тех пор, пока не даст отбой вызвавший или вызванный абонент. В этом смысле коммутатор Softswitch можно рассматривать как управляющую систему.

В число функций управления обслуживанием вызова входят распознавание и обработка цифр номера для определения пункта назначения; а также распознавание момента ответа, момента, когда один из абонентов кладет трубку, и регистрация этих действий для начисления платы. Таким образом, Softswitch фактически остается все тем же привычным коммутационным узлом, только без цифрового коммутационного поля и абонентских комплектов, что позволяет легко интерпретировать его функции в различных сценариях модернизации телефонной сети общего пользования (ТФОП). Ответственность за перечисленные выше операции Softswitch возложена на входящий в его состав функциональный элемент Call Agent.

Другой термин, часто ассоциируемый с Softswitch, - контроллер транспортного шлюза MGC. Это название подчеркивает факт управления транспортными шлюзами и шлюзами доступа по протоколу H.248 или другому. Softswitch координирует обмен сигнальными сообщениями между сетями, то есть поддерживает функциональность шлюза сигнализации - Signalling Gateway (SG). Он координирует действия, обеспечивающие соединение с логическими объектами в разных сетях, и преобразует информацию в сообщениях. Подобное преобразование необходимо, чтобы сигнальные сообщения были одинаково интерпретированы на обеих сторонах несходных сетей, обеспечивая с первого этапа модернизации работу с автоматическими телефонными станциями (АТС).

Эталонная архитектура Softswitch


Модели архитектуры Softswitch предусматриваются четыре функциональные плоскости:

  • транспортная плоскость - отвечает за транспортировку сообщений по сети связи. Включает в себя Домен IP-транспортировки, Домен взаимодействия и Домен доступа, отличного от IP.
  • плоскость управления обслуживанием вызова и сигнализации - управляет основными элементами сети IP-телефонии. Включает в себя контроллер медиашлюзов, Call Agent, Gatekeeper.
  • плоскость услуг и приложений - реализует управление услугами в сети. Содержит серверы приложений и серверы ДВО.
  • плоскость эксплуатационного управления - поддерживает функции активизации абонентов и услуг, техобслуживания, биллинга и другие эксплуатационные задачи.

Системы сигнализации

Основная задача Softswitch - согласовывать разные протоколы сигнализации как сетей одного типа, например, при сопряжении сетей H.323 и SIP, так и при взаимодействии сетей коммутации каналов с IP-сетями.

Основные типы сигнализации, которые использует SoftSwitch, - это сигнализация для управления соединениями, сигнализация для взаимодействия разных SoftSwitch между собой и сигнализация для управления транспортными шлюзами. Основными протоколами сигнализации управления соединениями сегодня являются SIP-T, ОКС-7 и H.323. В качестве опций используются протокол E-DSS1 первичного доступа ISDN, протокол абонентского доступа через интерфейс V5, а также все еще актуальная сигнализация по выделенным сигнальным каналам CAS.

Основными протоколами сигнализации управления транспортными шлюзами являются MGCP и Megaco/H.248, а основными протоколами сигнализации взаимодействия между коммутаторами SoftSwitch являются SIP-T и BICC.

3.2 IMS (IP Multimedia Subsystem ) - Мультимедийная IP-подсистема

Исторически к IMS вели два направления. Эту технологию можно воспринимать как продолжение эволюции интеллектуальных платформ, которая началась более десяти лет назад, когда были утверждены первые стандарты в этой области.

Второй вариант развития событий берет начало в технологии Softswitch. Технология IMS стала продолжением эволюции устройств управления NGN, но теперь к фиксированным сетям присоединились подвижные, и был сделан акцент на 3G.

Для чего это нужно:
Технология IMS, стандарты которой являются базовыми для большинства производителей оборудования, позволяет создать однородную среду предоставления широкого спектра мультимедийных услуг, создавая основу конвергенции фиксированных и мобильных сетей.
IMS позволяет разрабатывать и предоставлять абонентам сетей фиксированной и мобильной связи персонализированные услуги, основанные на различных комбинациях голоса, текста, графики и видео (чат на экране мобильного телефона, электронная почта, игры и многое другое). Решения IMS значительно расширяют возможности конечного пользователя за счет предоставления расширенного набора услуг, в том числе тех, которые были невозможны или экономически неэффективны в сетях TDM.

IMS обеспечивает архитектуру, в которой многие функции могут быть использованы с различными приложениями и у разных провайдеров. Это позволяет быстро и эффективно создавать новые услуги и непосредственно предоставлять их. В основе концепции этого стандарта лежит способность IMS передавать сигнальный трафик и трафик в канале через IP-уровень, а также выполнять функции маршрутизатора или механизма управления сессиями абонентов с использованием информации об их состоянии.

Архитектура IMS обычно делится на три горизонтальных уровня: транспорта и абонентских устройств; управления вызовами и сеансами (функция CSCF и сервер абонентских данных); уровень приложений. Базовые компоненты включают в себя программные коммутаторы, распределенный абонентский регистр (S-DHLR), медиа-шлюзы и серверы SIP. Унифицированная сервисная архитектура IMS поддерживает широкий спектр сервисов, основанных на гибкости протокола SIP (Session Initiation Protocol). В рамках IMS действует множество серверов приложений, предоставляющих как обычные телефонные услуги, так и новые сервисы (обмен мгновенными сообщениями, мгновенная многоточечная связь, передача видеопотоков, обмен мультимедийными сообщениями и т.д.).

Базовыми элементами опорной сети архитектуры IMS являются:

  • CSCF (Call Session Control Function) - элемент с функциями управления сеансами и маршрутизацией, состоит из трех функциональных блоков:
    • P-CSCF (Proxy CSCF) - посредник для взаимодействия с абонентскими терминалами. Основные задачи - аутентификация абонента и формирование учётной записи;
    • I-CSCF (Interrogating CSCF) - посредник для взаимодействия с внешними сетями. Основные задачи - определение привилегий внешнего абонента по доступу к услугам, выбор соответствующего сервера приложений и обеспечение доступа к нему;
    • S-CSCF (Serving CSCF) - центральный узел сети IMS, обрабатывает все SIP-сообщения, которыми обмениваются оконечные устройства.
  • HSS (Home Subscriber Server) - сервер домашних абонентов, является базой пользовательских данных и обеспечивает доступ к индивидуальным данным пользователя, связанными с услугами. В случае если в сети IMS используется несколько серверов HSS, необходимо добавление SLF (Subscriber Locator Function) который занимается поиском HSS с данными конкретного пользователя.
  • BGCF - элемент управляющий пересылкой вызовов между доменом коммутации каналов и сетью IMS. Осуществляет маршрутизацию на основе телефонных номеров и выбирает шлюз в домене коммутации каналов, через который сеть IMS будет взаимодействовать с ТфОП или GSM.
  • MGCF - управляет транспортными шлюзами.
  • MRFC - управляет процессором мультимедиа ресурсов, обеспечивая реализацию таких услуг, как конференц-связь, оповещение, перекодирование передаваемого сигнала.

Услуги в сетях IMS

  • Индикация присутствия (presense)
  • Управление групповыми списками
  • Групповое общение (Group Communication)
  • Push-To-Talk
  • Push-To-Show
  • Доска для записей (Whiteboard) услуга, позволяющая двум или нескольким абонентам совместно редактировать рисунки и документы в режиме реального времени. Все, что делается одним участником сеанса, видят в режиме on-line все остальные участники.
  • Многопользовательские игры в реальном времени (шахматы и другие игры).
  • Голосовые вызовы с усовершенствованными функциями (Enriched Voice Calling). Включают видео-телефонию и возможность добавления к вызовам своего контента.
  • Совместное использование файлов в сети (File Sharing)

3.3 Softswitch и IMS: сходства и различия

Softswitch и IMS: сходства...

Если сравнить архитектуры Softswitch и IMS, то из приведенных рисунков видно, что и та и другая архитектуры имеют трехуровневое деление, причем границы уровней проходят на одних и тех же местах. Для архитектуры Softswitch изображены в первую очередь устройства сети, а архитектура IMS определена на уровне функций. Идентичны также идея предоставления всех услуг на базе IP-сети и разделение функций управления вызовом и коммутации. По сути, к уже известным функциям Softswitch добавляются функции шлюза OSA и сервер абонентских данных.

... и различия

Посмотрев на приведенные выше списки функций в обеих архитектурах, можно заметить, что состав функций практически не отличается. Можно было бы заключить, что обе архитектуры почти тождественны. Это верно, но только отчасти: они идентичны в архитектурном смысле. Если же разобрать содержание каждой из функций, то обнаружатся значительные различия в системах Softswitch и IMS. Например, функция CSCF: из ее описания уже видно отличие от аналогичных функций в Softswitch. К тому же если в архитектуре Softswitch функции имеют довольно условное деление и описание, то в документах IMS дается довольно жесткое описание функций и процедур их взаимодействия, а также определены и стандартизированы интерфейсы между функциями системы.

Различие начинается с основной концепции систем. Softswitch - это в первую очередь оборудование конвергентных сетей. Функция управления шлюзами (и соответственно протоколы MGCP/MEGACO) является в нем доминирующей (протокол SIP для взаимодействия двух Softswitch/ MGC). IMS проектировалась в рамках сети 3G, полностью базирующейся на IP. Основным ее протоколом является SIP, позволяющий устанавливать одноранговые сессии между абонентами и использовать IMS лишь как систему, предоставляющую сервисные функции по безопасности, авторизации, доступа к услугам и т.д. Функция управления шлюзами и сам медиа-шлюз здесь лишь средство для связи абонентов 3G с абонентами фиксированных сетей. Причем имеются в виду лишь ТФОП. Для общения абонентов 3G с абонентами фиксированных VoIP-сетей и абонентами других 3G-сетей архитектура IMS предусматривает использование функции Security Gateway Function, которую реализуют граничные контроллеры SBC.

Также к особенностям IMS относится ориентированность на протокол IPv6: многие специалисты считают, что популярность IMS послужит толчком к затянувшемуся внедрению шестой версии протокола IP. Но пока это представляет некоторую проблему: сети UMTS поддерживают как IPv4, так и IPv6, в то время как IMS -только IPv6. Поэтому на входе в IMS-сеть необходимо наличие шлюзов, преобразующих формат заголовков и адресную информацию. Эта проблема присуща не только IMS, но и всем сетям IPv6.