Допустимые значения силы тока и напряжения. Предельно допустимые токи Ih мА и напряжение прикосновения Uпр В. Факторы, влияющие на исход поражения

Наша современная жизнь полна разнообразием бытовых приборов и устройств, которые существенно облегчают нам быт, делают его все более комфортным, но одновременно появляется целый комплекс опасных, вредных факторов: электромагнитные поля различных частот, повышенный уровень радиации, шумы, вибрации, опасности механического травмирования, наличие токсичных веществ, а так же самое главное – электрический ток.

Электрическим током называется упорядоченное движение электрических частиц. Для вашей же безопасности необходимо знать действие электрического тока на организм человека, меры защиты от поражения током, оказание помощи пострадавшему от воздействия электротока человеку.

Воздействие на организм человека электрического тока

На человека электрический ток оказывает биологическое, термическое, электролитическое действия.

Термическое: нагревание тканей при протекании по ним электрического тока.

Электролитическое: разложение крови и других жидкостей организма.

Биологическое: возбуждение живых тканей организма, сопровождается судорогами, спазмом мышц, сердечной деятельностью, остановкой дыхания.

Когда на человека действует электрический ток, возникают телесные электротравмы: ожоги, электрические знаки, металлизация кожи, механические повреждения, ослепление светом электрической дуги, или может произойти электрический удар – это общее поражение организма, которое может сопровождаться судорогами, потерей сознания, остановкой дыхания и сердца, и даже клинической смертью.

Электрические знаки – это пятна серого и бледно-желто цвета, ушибы, царапины на коже человека, которые подвергались действию тока. Сила знака соответствует силе токоведущей части, которой коснулся человек. В большинстве случаев лечение электрических знаков заканчивается благополучно, а пораженное место полностью восстанавливается.

Механические повреждения возникают под действием электрического тока, когда непроизвольно судорожно сокращаются мышцы. Механические повреждения (переломы костей, разрывы кровеносных сосудов, кожи) это повреждения, которые требуют долгого лечения.

Удар электрическим током . Время от времени бывают случаи, когда дети из любопытства засовывают пальцы в электрическую розетку или начинают ковырять в ней гвоздем, проволокой или другими металлическими предметами. Чаще всего это бывает с детьми до трех лет. Бывают случаи, когда дети получают удар электрическим током от упавших на землю и находящихся под напряжением проводов. При воздействии электрического тока на организм может возникнуть непроизвольное судорожное сокращение мышц, мешающее ребенку оторваться от источника тока. В месте соприкосновения с током возникает электроожог. В тяжелом случае появляется расстройство дыхания и сердечной деятельности. Первое, что нужно сделать, – освободить ребенка от действия электрического тока. Самое безопасное – быстро вывернуть пробки, если несчастный случай произошел в доме. Если по каким-либо причинам это сделать невозможно, то необходимо бросить себе под ноги резиновый коврик, доску или толстую ткань либо надеть на ноги резиновые сапоги или галоши; можно надеть на руки хозяйственные резиновые перчатки. Пострадавшего оттащить от провода, схватившись одной рукой за одежду. Можно также попытаться отодвинуть самого пострадавшего от источника тока либо отстранить от него источник. Сделать это нужно одной рукой, чтобы даже при получении удара ток не прошел через все тело того, кто оказывает помощь. Пострадавшего необходимо уложить, тепло укрыть, освободить от стесняющей одежды, при возможности дать теплое питье. На обожженный электротоком участок тела следует наложить стерильную повязку из бинта или чистой ткани, предварительно смочив ее в спирте или водке. Если ребенок потерял сознание, ему дают понюхать нашатырный спирт и брызгают в лицо холодной водой. Если ребенок лежит без сознания и у него отсутствует дыхание, но есть пульс, необходимо немедленно делать ему искусственное дыхание методом "рот в рот". Для этого голову ребенка запрокидывают назад и, зажимая ему ноздри, вдувают в рот воздух порциями, приложив свои губы к губам ребенка.

Электрический ожог разных степеней – результат коротких замыканий в электрических установках и нахождение тела (рук) в среде светового и теплового влияния электрической дуги; ожоги III и IV степени с тяжелым исходом – при соприкосновении человека с частями, по которым проходит ток напряжением свыше 1000 В.

Металлизация кожи это мельчайшие частицы металла проникают в верхние слои кожи, расплавившегося под действием электрической дуги или растворенного в электролитах электролизных ванн. В пораженном месте кожа становится жесткой, шероховатой и приобретает ту окраску какая у металла (например, зеленую – от соприкосновения с медью). Работа, связанная с вероятностью возникновения электрической дуги, следует делать в очках, а одежда работника должна быть застегнута на все пуговицы.

Сила тока,mA

Переменный ток

Постоянный ток

Ощущение протекания тока Пальцы рук дрожат (легко)

Не ощущается

Пальцы рук дрожат (сильно)

Не ощущается

Судороги в руках

Зуд. Ощущение нагрева

Руки парализуются немедленно, оторвать их от электродов не возможно, очень сильные боли. Дыхание затруднено

Еще больше усиливается нагревание, незначительное сокращение мышц рук

Паралич дыхания. Начинаются трепетать желудочки сердца

Сильное ощущение нагревания. Сокращение мышц рук. Судороги. Затруднение дыхания.

Фибрилляция сердца

Паралич дыхания

Электроофтальмия – ультрафиолетовый луч (источником которых, является вольтова дуга, она поражает глаз). В результате электроофтальмии наступает воспалительный процесс, и если приняты необходимые меры лечения, то боль проходит.

В зависимости от величины тока, его напряжения, частоты, продолжительности воздействия, пути тока и общего состояния человека зависит исход действия электрического тока на организм человека. установлено, что ток силой более 0,05 А может смертельно травмировать человека в течение 0,1 с. Самое большое число поражений от электрического тока (около 85%) приходится на установки напряжением до 1000 В. Для человеческого организма опасны переменный и постоянный ток. Наиболее опасен переменный ток, имеющий частоту 20-100 Гц; а частота 400 Гц не так опасна. Практически безопасным для человека в сырых помещениях можно считать напряжение до 12 В, в сухих помещениях – до 36 В. Вероятность поражения человека электрическим током зависит от климатических условий в помещении (температуры, влажности), а также токопроводящей пыли, металлических конструкций, соединенных с землей, токопроводящего пола и т.д.

В соответствии с "Правилами устройства электроустановок потребителей" (ПУЭ) все помещения делят на три класса:

    без повышенной опасности – нежаркие (до +35°С), сухие (до 60%), непыльные, с нетокопроводящим полом, не загроможденные оборудованием;

    с повышенной опасностью – имеют, по крайней мере, один фактор повышенной опасности, т.е. жаркие или влажные (до 75%), пыльные, с токопроводящим полом и т.п.;

    особо опасные – имеют два или более факторов повышенной опасности или, по крайней мере, один фактор особый опасности, т.е. особую сырость (до 100%) или наличие химически активной среды.

Возможные значения токов и напряжений соприкосновения в зависимости от времени срабатывания защиты указаны в ГОСТ 12.1.038-88. По этому документу для нормального (неаварийного) режима работы промышленного оборудования допустимые напряжения прикосновения не должны быть больше 2 В при частоте тока 50 Гц, 3 В при 400 Гц и 8 В для постоянного тока, но суммарная продолжительность воздействия не должна превышать 10мин в сутки. В нормальном режиме работы бытовой аппаратуры наличие напряжений прикосновения не допускается. В особо опасных (или с повышенной опасностью) помещениях подлежит заземлению все оборудование при напряжении питания свыше 42В переменного и ПО В постоянного тока. В нормальных помещениях все оборудование при напряжении 380 В и выше переменного и 440 В и выше постоянного тока. Все оборудование независимо от напряжения питания заземляется только во взрывоопасных помещениях.

С увеличением продолжительности воздействия электрического тока на человека возрастает угроза поражения. Через 30 сек. сопротивление тела человека протеканию тока падает примерно на 25%, через 90 сек. на 70%. Сопротивление организма человека электрическому току колеблется в широком диапазоне. Сухая, грубая мозолистая кожа, отсутствие усталости и нормальное состояние нервной системы повышает сопротивление человеческого организма. Нервные волокна и мускулы обладают наименьшим сопротивлением. За минимальное расчетное сопротивление человеческого организма принимается величина от 500 до 1000 Ом.

В тот момент, когда человек замыкает своим телом два фазных провода действующей установки, он попадает под полное линейное напряжение сети. При учете того, что расчетное сопротивление тела человека принимается 1000 Ом, то при двухфазном прикосновении к действующим частям установки, напряжение в которой 100 В, может оказаться смертельным, по причине того, что ток, проходящий через тело человека, достигает величины 0,1 А.

Если через тело человека проходит ток 0,06 А и более, происходит поражение электрическим током. Сопротивление человека электрическим током величина переменная. Она зависит от многих факторов, в том числе от психологического состояние и физического состояния человека. В пределах 20-100 кОм находится среднее значение сопротивления. Оно может снизиться до 1 кОм при особо неблагоприятных условиях. В этом случае окажется опасным для жизни человека напряжение 100 В и ниже.

Величина тока, проходящая через человеческое тело, зависит от его сопротивления. А сопротивление зависит в основном от состояния кожи человека. Сопротивления тела человека зависит и от частоты тока. За расчетную величину электрического сопротивления тела принято сопротивление, равное 1,0 кОм. При частотах тока 6-15 кГц оно бывает наименьшим.

Постоянный ток является менее опасным, чем переменный. Постоянный ток до 6 мА почти не ощутим. При токе 20 мА появляются судороги в мускулах предплечья. Переменный ток начинает ощущаться уже при 0,8 мА. Ток 15 мА вызывает сокращение мышц рук. Особенно опасным является прохождение тока через сердце.

Опасность поражения постоянным и переменным током изменяется с увеличением напряжения. При напряжении до 220 В более опасным является переменный ток, а при напряжении выше 500 В опасное постоянный ток. Чем больше протекает ток, тем меньше становится сопротивление человеческого тела. Может наступить смерть, если действие электрического тока не будет прервано. Если ток проходит от руки к ногам, то существенное значение имеет какая на человеке обувь, из какого она материала, какого она качества. На степень поражения значительное влияние оказывает также сопротивление в месте соприкосновения человека с землей. Электрический ток имеет тяжелые последствия, вплоть до остановки сердца и прекращения дыхания. Поэтому нужно уметь оказать первую помощь пострадавшему от поражения электрическим током.

Статическое электричество – это потенциальный запас электрической энергии, образующейся на оборудовании в результате трения, индукционного влияния сильных электрических разрядов. В помещениях с большим кол-вом пыли органического происхождения могут образоваться статические разряды, а также накапливаться на людях при пользовании бельем и одеждой из щелка, шерсти и искусственных волокон, при движении по токонепроводящему синтетическому покрытию пола, типа линолеума, кавролина и т.д.

Нормирование электростатического поля проводится в соответствии с ГОСТ 12.1.045-84 напряженность электрического поля на рабочих местах не должна превышать 60 кВ/м в течение часа. Время пребывания в электрическом поле при 20≤Е≤60 (кВ) рассчитывается по формуле t=(60/E)2, где Е – фактическое значение напряженности поля. Сопротивление заземляющих устройств для защиты от статического электричества не должно превышать 100 (Ом).

Содержание:

Если электрический ток будет протекать по проводнику в течение длительного времени, в этом случае установится определенная стабильная температура данного проводника, при условии неизменной внешней среды. Величины токов, при которых температура достигает максимального значения, в электротехнике известны как длительно допустимые токовые нагрузки для кабелей и проводов. Данные величины соответствуют определенным маркам проводов и кабелей. Они зависят от изоляционного материала, внешних факторов и способов прокладки. Большое значение имеет материал и сечение кабельно-проводниковой продукции, а также режим и условия эксплуатации.

Причины нагрева кабеля

Причины повышения температуры проводников тесно связаны с самой природой электрического тока. Всем известно, что по проводнику под действием электрического поля упорядоченно перемещаются заряженные частицы - электроны. Однако для кристаллической решетки металлов характерны высокие внутренние молекулярные связи, которые электроны вынуждены преодолевать в процессе движения. Это приводит к высвобождению большого количества теплоты, то есть, электрическая энергия преобразуется в тепловую.

Данное явление похоже на выделение теплоты под действием трения, с той разницей, что в рассматриваемом варианте электроны соприкасаются с кристаллической решеткой металла. В результате, происходит выделение тепла.

Такое свойство металлических проводников имеет как положительные, так и отрицательные стороны. Эффект нагрева используется на производстве и в быту, как основное качество различных устройств, например, электрических печей или электрочайников, утюгов и другой техники. Отрицательными качествами являются возможные разрушения изоляции при перегреве, что может привести к возгоранию, а также выходу из строя электротехники и оборудования. Это означает, что длительные токовые нагрузки для проводов и кабелей превысили установленную норму.

Существует множество причин чрезмерного нагрева проводников:

  • Основной причиной часто становится неправильно выбранное сечение кабеля. Каждый проводник обладает собственной максимальной пропускной способностью тока, измеряемого в амперах. Прежде чем подключать тот или иной прибор, необходимо установить его мощность и только потом . Выбор следует делать с запасом мощности от 30 до 40%.
  • Другой, не менее распространенной причиной, считаются слабые контакты в местах соединений - в распределительных коробках, щитках, автоматических выключателях и т.д. При плохом контакте провода будут нагреваться, вплоть до их полного перегорания. Во многих случаях достаточно проверить и подтянуть контакты, и чрезмерный нагрев исчезнет.
  • Довольно часто контакт нарушается из-за неправильного . Чтобы избежать окисления в местах соединений этих металлов, необходимо использовать клеммники.

Для правильного расчета сечения кабеля нужно вначале определить максимальные токовые нагрузки. С этой целью сумма всех номинальных мощностей у используемых потребителей, должна быть поделена на значение напряжения. Затем, с помощью таблиц можно легко подобрать нужное сечение кабеля.

Расчет допустимой силы тока по нагреву жил

Правильно выбранное сечение проводника не допускает падений напряжения, а также излишних перегревов под воздействием проходящего электротока. То есть, сечение должно обеспечивать наиболее оптимальный режим работы, экономичность и минимальный расход цветных металлов.

Сечение проводника выбирается по двум основным критериям, как допустимый нагрев и . Из двух значений сечения, полученных при расчетах, выбирается большая величина, округляемая до стандартного уровня. Потеря напряжения оказывает серьезное влияние преимущественно на состояние воздушных линий, а величина допустимого нагрева оказывает серьезное влияние на переносные шланговые и подземные кабельные линии. Поэтому сечение для каждого вида проводников определяется в соответствии с этими факторами.

Понятие допустимой силы тока по нагреву (Iд) представляет собой протекающую по проводнику силу тока в течение длительного времени, в процессе которого появляется значение длительно допустимой температуры нагрева. При выборе сечения необходимо соблюдение обязательного условия, чтобы расчетная сила тока Iр соответствовала допустимой силе тока по нагреву Iд. Значение Iр определяется по следующей формуле: Iр, в которой Рн является номинальной мощностью в кВт; Кз - коэффициент загрузки устройства, составляющий 0,8-0,9; Uн - номинальное напряжение устройства; hд - КПД устройства; cos j - коэффициент мощности устройства 0,8-0,9.

Таким образом, любому току, протекающему через проводник в течение длительного времени, будет соответствовать определенное значение установившейся температуры проводника. При этом, внешние условия, окружающие проводник, остаются неизменными. Величина тока, при которой температура данного кабеля считается максимально допустимой, известна в электротехнике, как длительно допустимый ток кабеля. Этот параметр зависит от материала изоляции и способа прокладки кабеля, его сечения и материала жил.

Когда рассчитываются длительно допустимые токи кабелей, обязательно используется значение максимальной положительной температуры окружающей среды. Это связано с тем, что при одинаковых токах теплоотдача происходит значительно эффективнее в условиях низких температур.

В разных регионах страны и в разное время года температурные показатели будут отличаться. Поэтому в ПУЭ имеются таблицы с допустимыми токовыми нагрузками для расчетных температур. Если же температурные условия значительно отличаются от расчетных, существуют поправки с помощью коэффициентов, позволяющих рассчитать нагрузку для конкретных условий. Базовое значение температуры воздуха внутри и вне помещений устанавливается в пределах 250С, а для кабелей, проложенных в земле на глубине 70-80 см - 150С.

Расчеты с помощью формул достаточно сложные, поэтому на практике чаще всего используется таблица допустимых значений тока для кабелей и проводов. Это позволяет быстро определить, способен ли данный кабель выдержать нагрузку на данном участке при существующих условиях.

Условия теплоотдачи

Наиболее эффективными условиями для теплоотдачи является нахождение кабеля во влажной среде. В случае прокладки в грунте, отведение тепла зависит от структуры и состава грунта и количества влаги, содержащейся в нем.

Для того чтобы получить более точные данные, необходимо определить состав почвы, влияющий на изменение сопротивления. Далее с помощью таблиц находится удельное сопротивление конкретного грунта. Данный параметр может быть уменьшен, если выполнить тщательную трамбовку, а также изменить состав засыпки траншеи. Например, теплопроводность пористого песка и гравия ниже, чем у глины, поэтому кабель рекомендуется засыпать глиной или суглинком, в которых отсутствуют шлаки, камни и строительный мусор.

Воздушные кабельные линии обладают плохой теплоотдачей. Она ухудшается еще больше, когда проводники прокладываются в кабель-каналах с дополнительными воздушными прослойками. Кроме того, кабели, расположенные рядом, подогревают друг друга. В таких ситуациях выбираются минимальные значения нагрузок по току. Чтобы обеспечить благоприятные условия эксплуатации кабелей, значение допустимых токов рассчитывается в двух вариантах: для работы в аварийном и длительном режиме. Отдельно рассчитывается допустимая температура на случай короткого замыкания. Для кабелей в бумажной изоляции она составит 2000С, а для ПВХ - 1200С.

Значение длительно допустимого тока и допустимая нагрузка на кабель представляет собой обратно пропорциональную зависимость температурного сопротивления кабеля и теплоемкости внешней среды. Необходимо учитывать, что охлаждение изолированных и неизолированных проводов происходит в совершенно разных условиях. Тепловые потоки, исходящие от кабельных жил, должны преодолеть дополнительное тепловое сопротивление изоляции. На кабели и провода, проложенные в земле и трубах, существенно влияет теплопроводность окружающей среды.

Если в одной прокладывается сразу несколько кабелей, в этом случае условия их охлаждения значительно ухудшаются. В связи с этим длительно допустимые токовые нагрузки на провода и кабели снижаются на каждой отдельной линии. Данный фактор нужно обязательно учитывать при расчетах. На определенное количество рабочих кабелей, проложенных рядом, существуют специальные поправочные коэффициенты, сведенные в общую таблицу.

Таблица нагрузок по сечению кабеля

Передача и распределение электрической энергии совершенно невозможно без проводов и кабелей. Именно с их помощью электрический ток подводится к потребителям. В этих условиях большое значение приобретает токовая нагрузка по сечению кабеля, рассчитываемая по формулам или определяемая с помощью таблиц. В связи с этим, сечения кабелей подбираются в соответствии с нагрузкой, создаваемой всеми электроприборами.

Предварительные расчеты и выбор сечения обеспечивают бесперебойное прохождение электрического тока. Для этих целей существуют таблицы с широким спектром взаимных связей сечения с мощностью и силой тока. Они используются еще на стадии разработки и проектирования электрических сетей, что позволяет в дальнейшем исключить аварийные ситуации, влекущие за собой значительные затраты на ремонт и восстановление кабелей, проводов и оборудования.

Существующая таблица токовых нагрузок кабелей, приведенная в ПУЭ показывает, что постепенный рост сечения проводника вызывает снижение плотности тока (А/мм2). В некоторых случаях вместо одного кабеля с большой площадью сечения, более рациональным будет использование нескольких кабелей с меньшим сечением. Однако, данный вариант требует экономических расчетов, поскольку при заметной экономии цветного металла жил, возрастают затраты на устройство дополнительных кабельных линий.

Выбирая наиболее оптимальное сечение проводников с помощью таблицы, необходимо учитывать несколько важных факторов. Во время проверки на нагрев, токовые нагрузки на провода и кабели принимаются из расчета их получасового максимума. То есть, учитывается средняя максимальная получасовая токовая нагрузка для конкретного элемента сети - трансформатора, электродвигателя, магистралей и т.д.

Кабели, рассчитанные на напряжение до 10 кВ, имеющие пропитанную бумажную изоляцию и работающие с нагрузкой, не превышающей 80% от номинала, допускается краткосрочная перегрузка в пределах 130% на максимальный период 5 суток, не более 6 часов в сутки.

Когда нагрузка кабеля по сечению определяется для линий, проложенных в коробах и лотках, ее допустимое значение принимается как для проводов, уложенных открытым способом в лотке в одном горизонтальном ряду. Если провода прокладываются в трубах, то это значение рассчитывается, как для проводов, уложенных пучками в коробах и лотках.

Если в коробах, лотках и трубах прокладываются пучки проводов в количестве более четырех, в этом случае допустимая токовая нагрузка определяется следующим образом:

  • Для 5-6 проводов, нагруженных одновременно, считается как при открытой прокладке с коэффициентом поправки 0,68.
  • Для 7-9 проводников при одновременной нагрузке - так же как при открытой прокладке с коэффициентом 0,63.
  • Для 10-12 проводников при одновременной нагрузке - так же как при открытой прокладке с коэффициентом 0,6.

Таблица для определения допустимого тока

Расчеты, выполняемые вручную, не всегда позволяют определить длительно допустимые токовые нагрузки для кабелей и проводов. В ПУЭ содержится множество разных таблиц, в том числе и таблица токовых нагрузок, содержащая готовые значения, применительно к различным условиям эксплуатации.

Характеристики проводов и кабелей, приведенные в таблицах, дают возможность нормальной передачи и распределения электроэнергии в сетях с постоянным и переменным напряжением. Технические параметры кабельно-проводниковой продукции находятся в очень широком диапазоне. Они различаются собственной , количеством жил и другими показателями.

Таким образом, перегрев проводников при постоянной нагрузке можно исключить путем правильного подбора длительно допустимого тока и расчетов отведения тепла в окружающую среду.

1. Предельно допустимые значения напряжений прикосновения и токов

1.1. Предельно допустимые значения напряжений прикосновения и токов установлены для путей тока от одной руки к другой и от руки к ногам.

(Измененная редакция, Изм. N 1).

1.2. Напряжения прикосновения и токи, протекающие через тело человека при нормальном (неаварийном) режиме электроустановки, не должны превышать значений, указанных в табл. 1 .

Таблица 1

Примечания:

1. Напряжения прикосновения и токи приведены при продолжительности воздействия не более 10 мин в сутки и установлены, исходя из реакции ощущения.

2. Напряжения прикосновения и токи для лиц, выполняющих работу в условиях высоких температур (выше 25°С) и влажности (относительная влажность более 75%), должны быть уменьшены в три раза.

1.3. Предельно допустимые значения напряжений прикосновения и токов при аварийном режиме производственных электроустановок напряжением до 1000 В с глухозаземленной или изолированной нейтралью и выше 1000 В с изолированной нейтралью не должны превышать значений, указанных в табл. 2 .

Таблица 2

Род тока Нормируе-
мая
величина
Предельно допустимые значения, не более, при продолжительности воздействия тока
t, с
0,01-
0,08
0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 Св.
1,0
Переменный 50 Гц U, В
I, мА
550
650
340
400
160
190
135
160
120
140
105
125
95
105
85
90
75
75
70
65
60
50
20
6
Переменный
400 Гц
U, В
I, мА
650 500 500 330 250 200 170 140 130 110 100 36
8
Постоянный U, В
I, мА
650 500 400 350 300 250 240 230 220 210 200 40
15
Выпрямленный
двухполупериодный
U_ампл, В
I_ампл, мА
650 500 400 300 270 230 220 210 200 190 180 -
Выпрямленный
однополупериодный
U_ампл, В
I_ампл, мА
650 500 400 300 250 200 190 180 170 160 150 -

Примечание. Предельно допустимые значения напряжений прикосновения и токов, протекающих через тело человека при продолжительности воздействия более 1 с, приведенные в табл. 2 , соответствуют отпускающим (переменным) и неболевым (постоянным) токам.

1.4. Предельно допустимые значения напряжений прикосновения при аварийном режиме производственных электроустановок с частотой тока 50 Гц, напряжением выше 1000 В, с глухим заземлением нейтрали не должны превышать значений, указанных в табл. 3 .

Таблица 3

1.5. Предельно допустимые значения напряжений прикосновения и токов при аварийном режиме бытовых электроустановок напряжением до 1000 В и частотой 50 Гц не должны превышать значений, указанных в табл. 4 .

Таблица 4

Примечание. Значения напряжений прикосновения и токов установлены для людей с массой тела от 15 кг.

1.3-1.5. (Измененная редакция, Изм. N 1).

1.6. Защиту человека от воздействия напряжений прикосновения и токов обеспечивают конструкция электроустановок, технические способы и средства защиты, организационные и технические мероприятия по

Для правильного проектирования способов и средств защиты лю­дей от поражения электрическим током необходимо знать допустимые уровни напряжений прикосновения и значений токов, протекающих че­рез тело человека.

Напряжением прикосновения называется напряжение между дву­мя точками цепи тока, которых одновременно касается человек. Предельно допустимые значения напряжений прикосновения U ПД и то­ков I ПД, про­текающих через тело человека по пути "рука – рука" или "рука – ноги" при нормальном (неаварийном) режиме электроустановки, согласно ГОСТ 12.1.038-82* приведены в табл. 1.

При аварийном режиме производственных и бытовых приборов и электроустановок напряжением до 1000 В с любым режимом нейтрали предельно допустимые значения U ПД и I ПД не должны превышать значе­ний, приведенных в табл. 2. Аварийный режим означает, что электроус­тановка неисправна, и могут возникнуть опасные ситуации, приводящие к электротравмам.

При продолжительности воздействия более 1 с величины U ПД и I ПД соответствуют отпускающим значениям для переменного и условно неболевым для постоянного токов.

Таблица 1

Предельно допустимые значения напряжений прикосновения и токов

в нормальном режиме работы электроустановки

Примечание. Напряжения прикосновения и токи для лиц, выпол­няющих работу в условиях высоких температур (выше 25 С) и влажно­сти (отно­сительная влажность более 75 %), должны быть уменьшены в 3 раза.

Таблица 2

Предельно допустимые значения напряжения прикосновения

и токов в аварийном режиме работы электроустановки

Продолжительность действия электриче­ского тока, с

Производственные

электроустановки

Бытовые приборы,

электроустановки

4. Электрическое сопротивление тела человека

Значение тока через тело человека сильно влияет на тяжесть элек­тро­травм. В свою очередь, сам ток согласно закону Ома определяется со­противлением тела человека и приложенным к нему напряжением, т.е. напряжением прикосновения.

Проводимость живых тканей обусловлена не только физическими свой­ствами, но и сложнейшими биохимическими и биофизическими процес­сами, присущими лишь живой материи. Поэтому сопротивление тела человека является комплексной переменной величиной, имеющей нели­нейную зависимость от множества факторов, в том числе от со­стояния кожи, окружающей среды, центральной нервной системы, фи­зиологиче­ских факторов. На практике под сопротивлением тела чело­века пони­мают модуль его комплексного сопротивления.

Электрическое сопротивление различных тканей и жидкостей тела человека не оди­наково: кожа, кости, жировая ткань, сухожилия имеют отно­си­тельно большое сопротивление, а мышечная ткань, кровь, лимфа, нервные волокна, спинной и головной мозг – малое сопротив­ле­ние.

Сопротивление тела человека, т.е. сопротивление между двумя электродами, наложенными на поверхность тела, в основном определя­ется сопротивлением кожи. Кожа состоит из двух основных слоев: на­ружного (эпидермис) и внутреннего (дер­ма).

Эпидермис можно условно представить состоящим из рогового и росткового слоев. Роговой слой состоит из мертвых ороговевших кле­ток, лишен кровеносных сосудов и нервов и поэтому является слоем неживой ткани. Толщина этого слоя колеблется в пределах 0,05 – 0,2 мм. В сухом и незагрязненном состоянии роговой слой можно рассмат­ривать как пористый диэлектрик, пронизанный множеством протоков сальных и потовых желез и обладающий большим удельным сопротивле­нием. Ростковый слой примыкает к роговому слою и состоит в основ­ном из живых клеток. Электрическое сопротивление этого слоя благо­даря наличию в нём отмирающих и находящихся на стадии ороговения клеток может в несколько раз превышать сопротивление внутреннего слоя кожи (дермы) и внутренних тканей организма, хотя по сравнению с сопротивлением рогового слоя оно невелико.

Дерма состоит из волокон соединитель­ной ткани, образующих густую, прочную, эластичную сетку. В этом слое находятся кровеносные и лимфатические сосуды, нервные оконча­ния, корни волос, а также потовые и сальные железы, выводные про­токи которых выходят на поверхность кожи, пронизывая эпидермис. Электрическое сопротивление дермы, являющейся живой тканью, неве­лико.

Полное сопротивление тела человека есть сумма сопротивлений тканей, расположенных на пути протекания тока. Основным физиоло­гическим фактором, определяющим величину полного сопротивления тела человека, является состояние кожного покрова в цепи тока. При сухой, чистой и неповрежденной коже сопротивление тела человека, измеренное при напряжении 15 - 20 В, колеблется от единиц до десят­ков кОм. Если на участке кожи, где прикладываются электроды, со­скоблить роговой слой, сопротивление тела упадет до 1 – 5 кОм, а при удалении всего эпидермиса – до 500 – 700 Ом. Если под электродами полностью удалить кожу, то будет измерено сопротивление внутренних тканей, которое составляет 300 – 500 Ом.

Для приближённого анализа процессов протекания тока по пути "рука – рука" через два одинаковых электрода может быть использован упрощённый вариант эквивалентной схемы цепи протекания электриче­ского тока через тело человека (рис. 1).

Рис. 1. Эквивалентная схема сопротивления тела человека

На рис. 1 обозначено: 1 – электроды; 2 – эпидермис; 3 – внутрен­ние ткани и органы тела человека, включая дерму; İ h – ток, протекаю­щий через тело человека; Ů h – напряжение, приложенное к электродам; R Н – активное сопротивление эпидермиса; C Н – ёмкость условного кон­денсатора, обкладками которого являются электрод и хорошо проводя­щие ток ткани тела человека, расположенные под эпидермисом, а ди­электриком – сам эпидермис; R ВН – активное сопротивление внутренних тканей, включая дерму.

Из схемы рис. 1 следует, что комплексное сопротивление тела человека определяется соотношением

где Z Н = (jС Н) -1 = -jХ Н – комплексное сопротивление емкости С Н;

Х Н – модуль Z Н; f , f – частота переменного тока.

В дальнейшем под сопротивлением тела человека будем подразу­мевать модуль его комплексного сопротивления:

. (1)

На высоких частотах (больше 50 кГц) Х Н =1/(C Н) << R ВН, и сопротивления R Н оказываются практически закороченными ма­лыми сопротивлениями емкостей C Н. Поэтому на высоких частотах со­противление тела человека z h в приближенно равно сопротивлению его внутренних тканей: R ВН z h в. (2)

При постоянном токе в установившемся режиме емкостные сопро­тивления являются бесконечно большими (при 
0 Х Н

). Поэтому сопротивление тела человека постоянному току

R h = 2R Н + R ВН. (3)

Из выражений (2) и (3) можно определить

R Н = (R h -z h в)/2. (4)

На основе выражений (1) – (4) можно получить формулу для вы­числения величины емкости C н:

, (5)

где z hf - модуль комплексного сопротивления тела на частоте f ;

C Н имеет размерность мкФ; z hf , R h и R ВН – кОм; f - кГц.

Выражения (2) – (5) позволяют определить параметры эквивалент­ной схемы (рис. 1) по результатам экспериментальных измерений.

Электрическое сопротивление тела человека зависит от ряда фак­торов. Повреждения рогового слоя кожи могут снизить сопротивление тела человека до величины его внутреннего сопротивления. Увлажнение кожи может понизить ее сопротивление на 30 – 50 %. Влага, попавшая на кожу, растворяет находящиеся на ее поверхности минеральные веще­ства и жирные кислоты, выведенные из организма вместе с потом и жи­ровыми выделениями, становится более электропроводной, улучшает контакт между кожей и электродами, проникает в выводные протоки потовых и жировых желез. При длительном увлажнении кожи ее на­ружный слой разрыхляется, насыщается влагой и его сопротивление может уменьшиться в ещё большей степени.

При кратковременном воздействии на человека теплового облуче­ния или повышенной температуры окружающей среды сопротивле­ние тела человека уменьшается за счёт рефлекторного расширения кро­веносных сосудов. При более длительном воздействии наступает пото­отделение, в результате чего сопротивление кожи уменьшается.

С увеличением площади электродов сопротивление наружного слоя кожи R Н уменьшается, емкость С Н увеличивается, а сопротивление тела человека уменьшается. При частотах свыше 20 кГц указанное влияние площади электродов практически утрачивается.

Сопротивление тела человека зависит также и от места приложе­ния электродов, что объясняется различной толщиной рогового слоя кожи, неравномерным распределением потовых желез на поверхности тела, неодинаковой степенью наполнения кровью сосудов кожи.

Прохождение тока через тело человека сопровождается местным нагревом кожи и раздражающим действием, что вызывает рефлекторное расширение сосудов кожи и, соответственно, усиленное снабжение ее кровью и повышенное потоотделение, что, в свою очередь, приводит к снижению сопротивления кожи в данном месте. При небольших напря­жениях (20 -30 В) за 1 – 2 минуты сопротивление кожи под электродами может понизиться на 10 – 40 % (в среднем на 25 %).

Повышение напряжения, приложенного к телу человека, вызывает уменьшение его сопротивления. При напряжениях в десятки вольт это происходит из-за рефлекторных реакций организма в ответ на раздра­жающее действие тока (усиление снабжения сосудов кожи кровью, по­тоотделение). При повышении напряжения до 100 В и выше происхо­дят сначала локальные, а затем и сплошные электрические пробои рого­вого слоя кожи под электродами. По этой причине при напряжениях около 200 В и выше сопротивление тела человека практически равно сопротивлению внутренних тканей R ВН.

При ориентировочной оценке опасности поражения электрическим током сопротивление тела человека принимают равным 1 кОм (R h = 1 кОм). Точное значение расчетных сопротивлений при разработке, рас­чёте и проверке защитных мер в электроустановках выбирается со­гласно ГОСТ 12.038-82*.

Сила тока, проходящего через тело человека, является основным фактором, который предопределяет последствия поражения. Различные по величине токи производят и разное влияние на организм человека

Различают три основных пороговые значения силы тока:

Пороговый ощутимый ток - наименьшее значение электрического тока, вызывающего при прохождении через организм человека ощутимые раздражения;

Пороговый невидпускаючий ток - наименьшее значение электрического тока, которое вызывает судорожные сокращения мышц руки, в которой зажат проводник, делает невозможным самостоятельное освобождение человека от действия й тока

Пороговый фибриляцийний (смертельно опасен) ток - наименьшее значение электрического тока, вызывающего при прохождении через тело человека фибрилляцию сердца

В таблице 71 приведены пороговые значения силы тока при его прохождении через тело человека путем"рука - рука"или"рука - ноги"

Ток (переменный и постоянный) более 5. А вызывает мгновенную остановку сердца, минуя состояние фибрилляции

Таблица 71. Пороговые значения переменного и постоянного тока

Чем выше значение напряжения, тем больше опасность поражения электрическим током. Условно безопасной для жизни человека принято считать напряжение не превышает 42. В (в Украине такое напряжение в зависимости от условий р работы и среды составляет 36 и 12. В), при которой не должен произойти пробой кожи человека, что приводит к резкому уменьшению общего сопротивления ее"тел; тіла.

Электрическое сопротивление тела человека зависит, в основном, от состояния кожи и центральной нервной системы. Для расчетов сопротивление тела человека условно принимают равным. Я - 1 кОм. При увлажнении, загрязнении и по ошкодженни кожи (потоотделения, порезы, царапины и т.п.), увеличении приложенного напряжения, площади контакта, частоты тока и времени его действия сопротивление тела человека уменьшается до определенного минимального значения (0,5-0,7 кОмм).

Вид и частота тока, проходящего через тело человека, также влияют на последствия поражения. Постоянный ток примерно в 4-5 раз безопаснее переменный. Однако частота переменного тока также приводит на аслидкы поражения. Так, наиболее опасным считается переменный ток частотой 20-100. Гц. При частоте, меньшей чем 20 или превышающим 100. Гц, опасность поражения током заметно уменьшается ток частотой п онад 500 кГц не может смертельно поразить человека, однако очень часто вызывает ожогопіки.

Путь прохождения тока через тело человека? возможных путей прохождения тока через тело человека (петель тока), их характеристики приведены в табл 72. Как видно из таблицы, наибольшую опасность представляет путь"голова - руки"(при нем доля пот ерпилих, что теряли сознание, составляет 92%), за ним идет -"голова - ноги", затем -"правая рука - ноги", а наименьшую опасность представляет путь"нога - ногаезпеку становить шлях "нога - нога".

Таблица 72. Характеристика наиболее распространенных путей прохождения тока через тело человека

Путь тока

Частота возникновения данного

пути тока,%

Доля пострадавших, которые теряли

сознание в течение действия

Значение тока, проходящего через сердце,% от общего

тока, проходящего через тело

Рука - рука

Правая рука - ноги

Левая рука - ноги

Нога - нога

Председатель - ноги

Председатель - руки

Допустимые значения токов и напряжений

Напряжение прикосновения - это напряжение между двумя точками электрической цепи, к которым одновременно прикасается человек

Предельно допустимые значения напряжения прикосновения и силы тока для нормального (безаварийного) и аварийного режимов электроустановок при прохождении тока через тело человека путем"рука - рука"или"р рука - ноги"регламентируются с помощью. ГОСТ 121038-82 (табл. 73 12.1.038-82 (табл. 7.3).

При выполнении работы в условиях высокой температуры (более 25 °. С) и относительной влажности воздуха (более 75%) значения табл 73 необходимо уменьшить в три раза